Recuperación de Au(III) con líquidos iónicos encapsulados con quitosano
Resumen
En este trabajo se presentan los resultados del estudio de recuperación de Au(III) a partir de soluciones de HCl, utilizando como extractante un líquido iónico (LI), el Cyphos IL 101 (cloruro de trihexil(tetradecil)fosfonio) encapsulado con quitosano reticulado con tripolifosfato de sodio (TPF). Se evaluaron diferentes parámetros de fabricación, como la concentración de LI (5-30%) y el tiempo de reticulación (20 min y 24 h). Posteriormente, se evaluó la eficiencia y la velocidad de extracción del Au(III). La reticulación evita la disolución del quitosano en medio ácido, sin embargo, solo fueron estables los materiales con bajas concentraciones de LI (5-10%), en medio HCl 1.0 M. El Au(III) fue eficientemente extraido, como tetracloruro aniónico, mediante un mecanismo de intercambio iónico. La eficiencia de extracción se incrementó con el contenido de LI en las microcápsulas (hasta 72 mg g-1), sin afectaciones significativas en la velocidad de extracción. El tiempo de reticulación no afectó significativamente la capacidad, ni la velocidad de extracción del Au(III).
Descargas
Citas
Ahamed, M.E.H., Mbianda, X.Y., Mulaba–Bafubiandi, A.F., Marjanovic, L. (2013). Selective extraction of gold(III) from metal chloride mixtures using ethylenediamine N–(2–(1–imidazolyl)ethyl) chitosan ion–imprinted polymer. Hydrometallurgy, 140, 1–13. DOI:10.1016/j.hydromet.2013.08.004
Cai, Y., Lapitsky, Y. (2014). Formation and dissolution of chitosan/pyrophosphate nanoparticles: Is the ionic crosslinking of chitosan reversible?. Colloids and Surfaces B: Biointerfaces, 115, 100–108. DOI:10.1016/j.colsurfb.2013.11.032
Campos, K., Vincent, T., Bunio, P., Trochimczuk, A., Guibal, E. (2008). Gold recovery from HCl solutions using Cyphos IL‐101 (a quaternary phosphonium ionic liquid) immobilized in biopolymer capsules. Solvent Extraction and Ion Exchange, 26(5), 570–601. DOI:10.1080/07366290802301572
Cieszyńska, A., Regel–Rosocka, M., Wiśniewski, M. (2007). Extraction of palladium(II) ions from chloride solutions with phosphonium ionic liquid Cyphos® IL101. Polish Journal of Chemical Technology, 9(2), 99–101. DOI:10.2478/v10026-007-0037-4
Cui, J., Zhang, L. (2008). Metallurgical recovery of metals from electronic waste: A review. Journal of Hazardous Materials, 158(2–3), 228–256. DOI:10.1016/j.jhazmat.2008.02.001
Das, N. (2010). Recovery of precious metals through biosorption — A review. Hydrometallurgy, 103(1–4),180–189.
DOI:10.1016/j.hydromet.2010.03.016
Ding, Y., Zhang, S., Liu, B., Zheng, H., Chang, C., Eckberg, C. (2019). Recovery of precious metals from electronic waste and spent catalysts: A review. Resources, Conservation and Recycling, 141, 284–298. DOI:10.1016/j.resconrec.2018.10.041
Korte, F., Spiteller, M., Coulston, F. (2000). The cyanide leaching gold recovery process is a nonsustainable technology with unacceptable impacts on ecosystems and humans: The disaster in Romania. Ecotoxicology and Environmental Safety, 46(3), 241–245. DOI:10.1006/eesa.2000.1938
Lin, X., Liu, J., Wan, S., He, X., Cui, L., Wu, G. (2019). A novel strategy for Cr(VI) removal from aqueous solution via CYPH@ IL101/chitosan capsule. International Journal of Biological Macromolecules, 136, 35–47. DOI: 10.1016/j.ijbiomac.2019.05.125
López–León, T., Carvalho, E.L.S., Seijo, B., Ortega–Vinuesa, J.L., Bastos–González, D. (2005). Physicochemical characterization of chitosan nanoparticles: electrokinetic and stability behavior. Journal of Colloid and Interface Science, 283(2), 344–351. DOI: 10.1016/j.jcis.2004.08.186.
Morales, J. (2020). Microencapsulación de líquidos iónicos con alginato de calcio mediante gelificación inversa para la recuperación de Au(III). Tesis de maestría, Universidad de Guanajuato. http://repositorio.ugto.mx/handle/20.500.12059/4502.
Natarajan, G., Ting, Y.–P. (2015). Gold biorecovery from e–waste: An improved strategy through spent medium leaching with pH modification. Chemosphere, 136, 232–238. DOI:10.1016/j.chemosphere.2015.05.046
Navarro, R., Lira, M.A., Saucedo, I., Alatorre, A., Avila, M., Guibal, E. (2017a). Amberlite XAD resins impregnated with ionic liquids for Au(III) recovery. Macromolecular Symposia, 374(1), 1600143. DOI:10.1002/masy.201600134
Navarro, R., Lira, M.A., Saucedo, I., Alatorre, A., Guibal, E. (2017b). Amberlite XAD–1180 impregnation with Cyphos IL101 for the selective recovery of precious metals from HCl solutions. Gold Bulletin, 50(1), 7–23. DOI:10.1007/s13404-016-0190-8
Navarro, R., Saucedo, I., Lira, M.A., Guibal, E. (2010). Gold (III) recovery from HCl solutions using Amberlite XAD–7 impregnated with an ionic liquid (Cyphos IL–101). Separation Science and Technology, 45(12–13), 1950–1962. DOI:10.1080/01496395.2010.493116
Nguye, V.T., Lee, J.–c, Kim, M.–s, Kim, S.–k., Chagnes, A., Cote, G. (2017). Sustainable extraction and separation of precious metals from hydrochloric media using novel ionic liquid-in-water microemulsion. Hydrometallurgy, 171, 344–354. DOI:10.1016/j.hydromet.2017.06.003
Okeola, F.O., Odebunmi, E.O. (2010). Comparison of Freundlich and Langmuir isotherms for adsorption of methylene blue by agrowaste derived activated carbon. Advances in Environmental Biology, 4(3), 329–335. http://www.aensiweb.com/old/aeb/2010/329-335.pdf
Sheel, A., Pant, D. (2018). Recovery of gold from electronic waste using chemical assisted microbial biosorption (hybrid) technique. Bioresource Technology, 247, 1189–1192. DOI:10.1016/j.biortech.2017.08.212
Shu, X.Z., Zhu, K.J. (2002). The influence of multivalent phosphate structure on the properties of ionically cross–linked chitosan films for controlled drug reléase. European Journal of Pharmaceutics and Biopharmaceutics, 54(2), 235–243. DOI: 10.1016/S0939-6411(02)00052-8
Vincent, T., Parodi, A., Guibal, E. (2018). Immobilization of Cyphos IL–101 in biopolymer capsules for the synthesis of Pd sorbents. Reactive & Functional Polymers, 68(7), 1159–1169. DOI:10.1016/j.reactfunctpolym.2008.04.001
Zhu, Y., Sengupta, A. K. (1992). Sorption enhancement of some hydrophilic organic solutes through polymeric ligand exchange. Environmental Science & Technology, 26(10), 1990–1998. DOI:10.1021/es00034a017
Derechos de autor 2023 Ricardo Navarro-Mendoza, Karla Gabriela Rodríguez-Becerra, Liliana Hernández-Perales
Esta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial-SinObrasDerivadas 4.0.