A brief introduction to low-power electrical energy harvesting mechanisms and configurations

Palabras clave: Cosechador, piezoeléctrico, triboeléctrico, electromagnético, termoeléctrico

Resumen

Technological development and a more environmentally friendly culture have encouraged alternative energy generation methods. Exploring all possible forms of production power has risen in several fields. Consequently, electronic devices leave out their conventional power supplies, meeting their energy needs without affecting the environment. This text overviews low-power applications' energy harvesting mechanisms, devices, and power generation capabilities. The piezoelectric, triboelectric, thermoelectric, and electromagnetic fundamental physics for energy harvesting applications is introduced. Examples of applications of energy harvesting systems are alsopresented. A summary of the power generation process is given, followed by a description of each physical mechanism used to harvest energy.

Descargas

La descarga de datos todavía no está disponible.

Citas

Al-Nabulsi, J., El-Sharo, S., Salawy, N., & Al-Doori, H. (2019). Methods of energy generation from the human body: A literature review. Journal of Medical Engineering & Technology, 43(4), 255–272. https://doi.org/10.1080/03091902.2019.1658818

Boag, J. W. (1953). The design of the electric field in a Van de Graaff generator. Proceedings of the IEE-Part IV: Institution Monographs, 100(5), 63–82.

Da Rosa, A. V., & Ordóñez, J. C. (2021). Fundamentals of renewable energy processes. Academic Press.

Dagdeviren, C., Li, Z., & Wang, Z. L. (2017). Energy Harvesting from the Animal/Human Body for Self-Powered Electronics. Annual Review of Biomedical Engineering, 19(1), 85–108. https://doi.org/10.1146/annurev-bioeng-071516-044517

Furfari, F. A. (2005). A history of the Van de Graaff generator. IEEE Industry Applications Magazine, 11(1), 10–14.

Goldsmid, H. J. (1964). Transport processes in metals and semiconductors. In Thermoelectric Refrigeration (pp. 12–41). Springer.

Gu, Y., Liu, W., Zhao, C., & Wang, P. (2020). A goblet-like non-linear electromagnetic generator for planar multi-directional vibration energy harvesting. Applied Energy, 266, 114846.

Guan, X., & Ouyang, J. (2021). Enhancement of the Seebeck coefficient of organic thermoelectric materials via energy filtering of charge carriers. CCS Chemistry, 3(10), 2415–2427.

Han, M., Wang, H., Yang, Y., Liang, C., Bai, W., Yan, Z., Li, H., Xue, Y., Wang, X., & Akar, B. (2019). Three-dimensional piezoelectric polymer microsystems for vibrational energy harvesting, robotic interfaces and biomedical implants. Nature Electronics, 2(1), 26–35.

Harman, T. C., Walsh, M. P., Laforge, B. E., & Turner, G. W. (2005). Nanostructured thermoelectric materials. Journal of Electronic Materials, 34, L19–L22.

Hofmann, A. I., Kroon, R., & Müller, C. (2019). Doping and processing of organic semiconductors for plastic thermoelectrics. In Handbook of Organic Materials for Electronic and Photonic Devices (pp. 429–449). Elsevier.

Jaffe, H. (1958). Piezoelectric Ceramics. Journal of the American Ceramic Society, 41(11), 494–498. https://doi.org/10.1111/j.1151-2916.1958.tb12903.x

Jonathan Adams. (2019, April 26). A Collaborative Approach to Enhancing Research Discovery. Dimensions. https://www.dimensions.ai/resources/a-collaborative-approach-to-enhancing-research-discovery/

Li, Y., Zhao, Z., Liu, L., Zhou, L., Liu, D., Li, S., Chen, S., Dai, Y., Wang, J., & Wang, Z. L. (2021). Improved output performance of triboelectric nanogenerator by fast accumulation process of surface charges. Advanced Energy Materials, 11(14), 2100050.

Lu, Z., Layani, M., Zhao, X., Tan, L. P., Sun, T., Fan, S., Yan, Q., Magdassi, S., & Hng, H. H. (2014). Fabrication of flexible thermoelectric thin film devices by inkjet printing. Small (Weinheim an Der Bergstrasse, Germany), 10(17), 3551–3554. https://doi.org/10.1002/smll.201303126

Lund, A., Tian, Y., Darabi, S., & Müller, C. (2020). A polymer-based textile thermoelectric generator for wearable energy harvesting. Journal of Power Sources, 480, 228836. https://doi.org/10.1016/j.jpowsour.2020.228836

Luo, A., Zhang, Y., Dai, X., Wang, Y., Xu, W., Lu, Y., Wang, M., Fan, K., & Wang, F. (2020). An inertial rotary energy harvester for vibrations at ultra-low frequency with high energy conversion efficiency. Applied Energy, 279, 115762.

Mahan, G. D. (2016). Thermoelectric Effect. In Reference Module in Materials Science and Materials Engineering. Elsevier. https://doi.org/10.1016/B978-0-12-803581-8.01291-1

Moulson, A. J., & Herbert, J. M. (2003). Electroceramics: Materials, Properties, Applications. John Wiley & Sons.

Naifar, S., Trigona, C., Bradai, S., Baglio, S., & Kanoun, O. (2020). Characterization of a smart transducer for axial force measurements in vibrating environments. Measurement, 166, 108157. https://doi.org/10.1016/j.measurement.2020.108157

Niu, S., Liu, Y., Wang, S., Lin, L., Zhou, Y. S., Hu, Y., & Wang, Z. L. (2014). Theoretical investigation and structural optimization of single-electrode triboelectric nanogenerators. Advanced Functional Materials, 24(22), 3332–3340.

Rosales, V. R., & Landaeta, R. E. G. (2021). Propuesta de un péndulo electromagnético para la recolección de energía en usuarios de dispositivos de soporte de la marcha. Memorias Del Congreso Nacional de Ingeniería Biomédica, 8(1), 138–141.

Ruiz, R. R., Cuautle, A. F., & Gomez, E. S. (2007). Development of lead-free (Bi1/2Na1/2) BaTiO3 Piezoelectric Ceramics for Clinical Applications in Ultrasound. 2007 4th International Conference on Electrical and Electronics Engineering, 75–78. https://doi.org/10.1109/ICEEE.2007.4344977

Sabry, R. S., & Hussein, A. D. (2019). PVDF: ZnO/BaTiO3 as high out-put piezoelectric nanogenerator. Polymer Testing, 79, 106001.

Shehata, N., Hassanin, A. H., Elnabawy, E., Nair, R., Bhat, S. A., & Kandas, I. (2020). Acoustic energy harvesting and sensing via electrospun PVDF nanofiber membrane. Sensors, 20(11), 3111.

Sodano, H. A., Inman, D. J., & Park, G. (2004). A Review of Power Harvesting from Vibration Using Piezoelectric Materials. The Shock and Vibration Digest, 36(3), 197.

Soin, N., Anand, S. C., & Shah, T. H. (2016). 12—Energy harvesting and storage textiles. In A. R. Horrocks & S. C. Anand (Eds.), Handbook of Technical Textiles (Second Edition) (pp. 357–396). Woodhead Publishing. https://doi.org/10.1016/B978-1-78242-465-9.00012-4

Song, H.-C., Kumar, P., Maurya, D., Kang, M.-G., Reynolds, W. T., Jeong, D.-Y., Kang, C.-Y., & Priya, S. (2017). Ultra-low resonant piezoelectric MEMS energy harvester with high power density. Journal of Microelectromechanical Systems, 26(6), 1226–1234.

Thelwall, M. (2018). Dimensions: A competitor to Scopus and the Web of Science? Journal of Informetrics, 12(2), 430–435. https://doi.org/10.1016/j.joi.2018.03.006

Uchino, K. (2018). Ferroelectric Devices. CRC Press.

Uchino, K. (2021). Misconceptions in Piezoelectric Energy-Harvesting System Development. Engineering Proceedings, 4(1), Article 1. https://doi.org/10.3390/Micromachines2021-09570

van Eck, N. J., & Waltman, L. (2010). Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics, 84(2), 523–538. https://doi.org/10.1007/s11192-009-0146-3

Wang, S., Lin, L., Xie, Y., Jing, Q., Niu, S., & Wang, Z. L. (2013). Sliding-triboelectric nanogenerators based on in-plane charge-separation mechanism. Nano Letters, 13(5), 2226–2233.

Wang, S., Xie, Y., Niu, S., Lin, L., & Wang, Z. L. (2014). Freestanding triboelectric-layer-based nanogenerators for harvesting energy from a moving object or human motion in contact and non-contact modes. Advanced Materials, 26(18), 2818–2824.

Wang, X.-Q., Tan, C. F., Chan, K. H., Lu, X., Zhu, L., Kim, S.-W., & Ho, G. W. (2018). In-built thermo-mechanical cooperative feedback mechanism for self-propelled multimodal locomotion and electricity generation. Nature Communications, 9(1), 1–10.

Wang, Y., Wu, Y., Liu, Q., Wang, X., Cao, J., Cheng, G., Zhang, Z., Ding, J., & Li, K. (2020). Origami triboelectric nanogenerator with double-helical structure for environmental energy harvesting. Energy, 212, 118462. https://doi.org/10.1016/j.energy.2020.118462

Wang, Y., Yang, E., Chen, T., Wang, J., Hu, Z., Mi, J., Pan, X., & Xu, M. (2020). A novel humidity resisting and wind direction adapting flag-type triboelectric nanogenerator for wind energy harvesting and speed sensing. Nano Energy, 78, 105279. https://doi.org/10.1016/j.nanoen.2020.105279

Wang, Z. L. (2013). Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano, 7(11), 9533–9557.

Wang, Z. L., & Wang, A. C. (2019). On the origin of contact-electrification. Materials Today, 30, 34–51.

Xu, C., Zi, Y., Wang, A. C., Zou, H., Dai, Y., He, X., Wang, P., Wang, Y.-C., Feng, P., & Li, D. (2018). On the electron-transfer mechanism in the contact-electrification effect. Advanced Materials, 30(15), 1706790.

Zhong, W., Xu, L., Zhan, F., Wang, H., Wang, F., & Wang, Z. L. (2020). Dripping channel based liquid triboelectric nanogenerators for energy harvesting and sensing. Acs Nano, 14(8), 10510–10517.

Zhou, L., Liu, D., Wang, J., & Wang, Z. L. (2020). Triboelectric nanogenerators: Fundamental physics and potential applications. Friction, 8, 481–506.

Zhu, G., Pan, C., Guo, W., Chen, C.-Y., Zhou, Y., Yu, R., & Wang, Z. L. (2012). Triboelectric-generator-driven pulse electrodeposition for micropatterning. Nano Letters, 12(9), 4960–4965.

Zhu, H., Li, Y., Shen, W., & Zhu, S. (2019). Mechanical and energy-harvesting model for electromagnetic inertial mass dampers. Mechanical Systems and Signal Processing, 120, 203–220.

Zou, H., Zhang, Y., Guo, L., Wang, P., He, X., Dai, G., Zheng, H., Chen, C., Wang, A. C., & Xu, C. (2019). Quantifying the triboelectric series. Nature Communications, 10(1), 1427.

Publicado
2023-07-05
Cómo citar
Morales-Almanza, K., Lara-Hernandez, G., Rodriguez-Jarquin, J. P., Xu, X., & Flores-Cuautle, J. de J. A. (2023). A brief introduction to low-power electrical energy harvesting mechanisms and configurations. Pädi Boletín Científico De Ciencias Básicas E Ingenierías Del ICBI, 11(21), 15-23. https://doi.org/10.29057/icbi.v11i21.10701