Errores comunes al usar modelado convexo y desigualdades matriciales lineales en control no lineal

Palabras clave: Desigualdades Matriciales Lineales, Método Directo de Lyapunov, Modelo Convexo, Control no Lineal, Dominio de atracción

Resumen

Este trabajo analiza los errores comunes al usar el modelado convexo y las desigualdades matriciales lineales para el control no lineal, una metodología que se ha vuelto cada vez más popular debido a su sistematicidad e implementabilidad numérica. Los ejemplos sobre problemas comunes son tomados de literatura existente: se clasifican, discuten y se dan consejos para prevenirlos. El modelado convexo se emplea en la variación de parámetros lineales, los modelos Takagi-Sugeno y otras estructuras convexas para subsumir o reescribir un sistema no lineal para el análisis o diseño a través del método directo de Lyapunov. La convexidad juega un papel central al permitir que un conjunto finito de condiciones en forma de desigualdades matriciales lineales sea suficiente para la tarea correspondiente. A diferencia de otras metodologías no lineales, ésta produce expresiones que se asemejan a resultados lineales, lo que hace que sea más fácil de comprender y, a menudo, induce errores sútiles.

Descargas

La descarga de datos todavía no está disponible.

Citas

Arino, C., Sala, A., Pérez, E., Bedate, F., Querol, A., 2017. Asymptotically exact stabilisation for constrained discrete Takagi–Sugeno systems via setinvariance. Fuzzy Sets and Systems 316, 117–138.

Begovich, O., Sanchez, E. N., Maldonado, M., 2002. Takagi-Sugeno fuzzy scheme for real-time trajectory tracking of an underactuated robot. IEEE Transactions on Control Systems Technology 10 (1), 14–20.

Bernal, M., Estrada, V., Márquez, R., 2019. Diseño e implementación de sistemas de control basados en estructuras convexas y desigualdades matriciales lineales.

Bernal, M., Guerra, T. M., 2010. Generalized non-quadratic stability of continuous-time Takagi-Sugeno models. IEEE Transactions on Fuzzy Systems 18 (4), 815–822.

Bertsekas, D., Nedi, A., Ozdaglar, A., 2003. Convex analysis and optimization. Athena Scientific.

Boyd, S., Ghaoui, L. E., Feron, E., Belakrishnan, V., 1994. Linear Matrix Inequalities in System and Control Theory. Vol. 15. SIAM: Studies In Applied Mathematics, Philadelphia, USA.

Cao, Y.-Y., Lam, J., Sun, Y.-X., 1998. Static output feedback stabilization: an ILMI approach. Automatica 34 (12), 1641–1645.

Chadli, M., Guerra, T.-M., 2012. LMI solution for robust static output feedback control of discrete Takagi–Sugeno fuzzy models. IEEE Transactions on Fuzzy Systems 20 (6), 1160–1165.

Chiu, C.-S., 2010. TS fuzzy maximum power point tracking control of solar power generation systems. IEEE Transactions on Energy Conversion 25 (4), 1123–1132.

Chiu, C.-S., Ouyang, Y.-L., 2011. Robust maximum power tracking control of uncertain photovoltaic systems: A unified TS fuzzy model-based approach. IEEE Transactions on Control Systems Technology 19 (6), 1516–1526.

Cockburn, J. C., Morton, B. G., 1997. Linear fractional representations of uncertain systems. Automatica 33 (7), 1263–1271.

Crusius, C. A., Trofino, A., 1999. Sufficient LMI conditions for output feedback control problems. IEEE Transactions on Automatic Control 44 (5), 1053–1057.

Daafouz, J., Bernussou, J., 2001. Parameter dependent Lyapunov functions for discrete time systems with time varying parametric uncertainties. Systems & Control Letters 43 (5), 355–359.

Feng, G., 2003. Controller synthesis of fuzzy dynamic systems based on piecewise Lyapunov functions. IEEE Transactions on Fuzzy Systems 11 (5), 605–612.

Feng, G., Chen, C., Sun, D., Zhu, Y., 2005. H∞ controller synthesis of fuzzy dynamic systems based on piecewise Lyapunov functions and bilinear matrix inequalities. IEEE Transactions on Fuzzy Systems 13 (1), 94–103.

Gahinet, P., Nemirovski, A., Laub, A. J., Chilali, M., 1995. LMI Control Toolbox. Math Works, Natick, USA.

González, T., Sala, A., Bernal, M., Robles, R., 2017. Piecewise-Takagi–Sugeno asymptotically exact estimation of the domain of attraction of nonlinear systems. Journal of the Franklin Institute 354 (3), 1514–1541.

Guerra, T. M., Kerkeni, H., Lauber, J., Vermeiren, L., 2012. An efficient Lyapunov function for discrete T-S models: Observer design. IEEE Transactions on Fuzzy Systems 20 (1), 187–192.

Johansen, T., Shorten, R., Murray-Smith, R., 2000. On the interpretation and identification of dynamic Takagi-Sugeno fuzzy models. IEEE Transactions on Fuzzy Systems 8 (3), 297–313.

Kailath, H., 1980. Linear Systems. Prentice Hall, New York, USA.

Kau, S.-W., Lee, H.-J., Yang, C.-M., Lee, C.-H., Hong, L., Fang, C.-H., 2007. Robust h∞ fuzzy static output feedback control of TS fuzzy systems with parametric uncertainties. Fuzzy sets and systems 158 (2), 135–146.

Khalil, H., 2002. Nonlinear Systems, 3rd Edition. Prentice Hall, New Jersey, USA.

Khalil, H., 2014. Nonlinear Control. Prentice Hall, New Jersey, USA.

Lee, D. H., Kim, D. W., 2014. Relaxed LMI conditions for local stability and local stabilization of continuous-time Takagi-Sugeno fuzzy systems. IEEE Transactions on Cybernetics 44 (3), 394–405.

Lendek, Z., Guerra, T. M., Babuska, R., De-Schutter, B., 2010. Stability Analysis and Nonlinear Observer Design Using Takagi-Sugeno Fuzzy Models. Springer-Verlag, Netherlands.

Meda-Campaña, J. A., Grande-Meza, A., de Jesús Rubio, J., Tapia-Herrera, R., Hernández-Cortés, T., Curtidor-López, A. V., Páramo-Carranza, L. A., Cázares-Ramírez, I. O., 2017. Design of stabilizers and observers for a class of multivariable T-S fuzzy models on the basis of new interpolation functions. IEEE Transactions on Fuzzy Systems 26 (5), 2649–2662.

Ohtake, H., Tanaka, K., Wang, H., 2003. Fuzzy modeling via sector nonlinearity concept. Integrated Computer-Aided Engineering 10 (4), 333–341.

Quintana, D., Estrada-Manzo, V., Bernal, M., 2021. An exact handling of the gradient for overcoming persistent problems in nonlinear observer design via convex optimization techniques. Fuzzy Sets and Systems 416, 125–140.

Sala, A., Ariño, C., 2009. Polynomial fuzzy models for nonlinear control: a Taylor series approach. IEEE Transactions on Fuzzy Systems 17 (6), 1284–1295.

Sala, A., Guerra, T. M., Babuska, R., 2005. Perspectives of fuzzy systems and control. Fuzzy Sets and Systems 156 (3), 432–444.

Scherer, C., 2004. Linear Matrix Inequalities in Control Theory. Delf University, Delf, The Netherlands.

Shamma, J. S., 2012. An overview of LPV systems. Control of linear parameter varying systems with applications, 3–26.

Shirani, F., Yazdanpanah, M., Araabi, B., 2010. Comments on “Controller synthesis of fuzzy-dynamic systems based on piecewise Lyapunov function”. IEEE Transactions on Fuzzy Systems 18 (1), 227–228.

Sturm, J., 1999. Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optimization Methods and Software 11-12, 625–653.

Tanaka, K., Ikeda, T., Wang, H., 1998. Fuzzy regulators and fuzzy observers: relaxed stability conditions and LMI-based designs. IEEE Transactions on Fuzzy Systems 6 (2), 250–264.

Tanaka, K., Sugeno, M., 1990. Stability analysis of fuzzy systems using Lyapunov’s direct method. In: Proc. NAFIPS’90. pp. 133–136.

Tanaka, K., Wang, H., 2001. Fuzzy Control Systems Design and Analysis: A linear matrix inequality approach. John Wiley & Sons, New York.

Taniguchi, T., Tanaka, K., Wang, H., 2001. Model construction, rule reduction and robust compensation for generalized form of Takagi-Sugeno fuzzy systems. IEEE Transactions on Fuzzy Systems 9 (2), 525–537.

Tóth, R., 2010. Modeling and identification of linear parameter-varying systems. Vol. 403. Springer.

VanAntwerp, J. G., Braatz, R. D., 2000. A tutorial on linear and bilinear matrix inequalities. Journal of process control 10 (4), 363–385.

Vázquez, D., Arceo, J., Márquez, R., Estrada-Manzo, V., Bernal, M., 2016. LMI-based nonlinear control of the Furuta pendulum. In: Congreso Nacional de Control AutomA˜¡tico. Mexico, pp. 122–127.

Vidyasagar, M., 2002. Nonlinear systems analysis. SIAM.

Wang, H., Tanaka, K., Griffin, M., 1996. An approach to fuzzy control of nonlinear systems: Stability and design issues. IEEE Transactions on Fuzzy Systems 4 (1), 14–23.

Publicado
2023-07-05
Cómo citar
Álvarez-Urias, J. L., Estrada-Manzo, V., & Bernal-Reza, M. Ángel. (2023). Errores comunes al usar modelado convexo y desigualdades matriciales lineales en control no lineal. Pädi Boletín Científico De Ciencias Básicas E Ingenierías Del ICBI, 11(21), 89-95. https://doi.org/10.29057/icbi.v11i21.10855