Estudio del comportamiento electroquímico del diclofenaco en su forma aniónica y ion-par en un medio acuoso sobre un ultramicroelectrodo de fibra de carbono

Palabras clave: diclofenaco, oxidación, reducción, voltametría, PM7

Resumen

En el presente trabajo se realizó un estudio voltamperométrico del proceso de redox del diclofenaco (DCF) en un medio acuoso a partir un baño electrolítico de composición 0.001 M DCF y 0.1 M de Na2SO4 a un pH= 7, y sobre un electrodo de fibra de carbono de 7 mm de diámetro. Los procesos de oxidación se relacionaron al diclofenaco en su forma aniónica (DCF-A), mientras que los de reducción al par ion {DFC-A − Na+}0. Las tendencias lineales de la corriente de pico vs la raíz cuadrada de la velocidad de barrido, indican que ambos procesos se encuentran controlados por difusión. La evaluación de los parámetros cinéticos a partir de los trazados de Tafel indican un coeficiente de transferencia catódico de 0.46, y el anódico es de 0.54. La comparación de las propiedades electrónicas de la especie protonada y {DFC-A − Na+}0 sugiere que el proceso de reducción registrado durante el estudio voltamperométrico, se debe al par ion formado bajo nuestras condiciones experimentales.

Descargas

La descarga de datos todavía no está disponible.

Citas

A. Sevcik. 1948. “Oscillographic Polarography with Periodical Triangular Voltage.” Collection of Czechoslovak Chemical Communications 13: 349–77. https://doi.org/10.1135/cccc19480349.

Allouche, Abdul Rahman. 2011. “Gabedita - A Graphical User Interface for Computational Chemistry Softwares.” Journal of Computational Chemistry 32(1): 174–82.

Andraws, Georgeos, and Saleh Trefi. 2020. “Ionisable Substances Chromatography: A New Approach for the Determination of Ketoprofen, Etoricoxib, and Diclofenac Sodium in Pharmaceuticals Using Ion – Pair HPLC.” Heliyon 6(8).

Bard, Allen J.; Faulkner, Larry R.; White, Henry S. 1980. “Electrochemical Methods: Fundamentals and Applications - Google Libros.” https://books.google.es/bookshl=es&lr=&id=Sct6EAAAQBAJ&oi=fnd&pg=PR21&dq=electrochemical+methods+bard&ots=QUaiwaB0RR&sig=pzcqb2nh6x0vth6I3V0c1QhRrZw#v=onepage&q=electrochemicalmethodsbard&f=false (April 11, 2023).

Bhushan, R., Gupta, D., & Mukherjee, A. 2007. “Liquid Chromatographic Analysis of Certain Commercial Formulations for Non-Opioid Analgesics.” Biomedical Chromatography 21(12): 1284–90.

Blanco-López, M. Carmen, María Jesús Lobo-Castañón, Arturo J. Miranda-Ordieres, and Paulino Tuñón-Blanco. 2003. “Voltammetric Response of Diclofenac-Molecularly Imprinted Film Modified Carbon Electrodes.” Analytical and Bioanalytical Chemistry 377(2): 257–61.

Boumya, Wafaa et al. 2021. “Electrochemical Sensors and Biosensors for the Determination of Diclofenac in Pharmaceutical, Biological and Water Samples.” Talanta Open 3(December).

Bravo-Rodriguez, Adrian S. et al. 2022. “Palladium Electrodeposition Onto a Carbon Fiber Ultramicroelectrode.” Croatica Chemica Acta 95(2).

Carreira, L. A. et al. 1995. “Europium(III) Ion Probe Spectrofluorometric Determination of Diclofenac Sodium.” Journal of Pharmaceutical and Biomedical Analysis 13(11): 1331–37.

Castellari, Carlo, and Stefano Ottani. 1997. “Two Monoclinic Forms of Diclofenac Acid.” Acta Crystallographica Section C: Crystal Structure Communications 53(6): 794–97.

Cid-Cerón, M. M. et al. 2016. “NEW INSIGTHS on the KINETICS and MECHANISM of the ELECTROCHEMICAL OXIDATION of DICLOFENAC in NEUTRAL AQUEOUS MEDIUM.” Electrochimica Acta 199: 92–98.

Dang, Chenyuan et al. 2020. “Pre-Accumulation and in-Situ Destruction of Diclofenac by a Photo-Regenerable Activated Carbon Fiber Supported Titanate Nanotubes Composite Material: Intermediates, DFT Calculation, and Ecotoxicity.” Journal of Hazardous Materials 400(June): 123225. https://doi.org/10.1016/j.jhazmat.2020.123225.

Dennington, R. D.; Keith, T. A. & Millam, J. M. 2008. “GaussView 5.0.8, Gaussian.”

Félix-Cañedo, Thania E., Juan C. Durán-Álvarez, and Blanca Jiménez-Cisneros. 2013. “The Occurrence and Distribution of a Group of Organic Micropollutants in Mexico City’s Water Sources.” Science of the Total Environment 454–455: 109–18. http://dx.doi.org/10.1016/j.scitotenv.2013.02.088.

Fini, A. et al. 1999. “Formation of Ion-Pairs in Aqueous Solutions of Diclofenac Salts.” International Journal of Pharmaceutics 187(2): 163–73.

Gevaerd, Ava et al. 2020. “A Carbon Fiber Ultramicroelectrode as a Simple Tool to Direct Antioxidant Estimation Based on Caffeic Acid Oxidation.” Analytical Methods 12(28): 3608–16.

Gibson, Richard, Elías Becerril-Bravo, Vanessa Silva-Castro, and Blanca Jiménez. 2007. “Determination of Acidic Pharmaceuticals and Potential Endocrine Disrupting Compounds in Wastewaters and Spring Waters by Selective Elution and Analysis by Gas Chromatography-Mass Spectrometry.” Journal of Chromatography A 1169(1–2): 31–39.

Goyal, Rajendra N., Sanghamitra Chatterjee, and Bharati Agrawal. 2010. “Electrochemical Investigations of Diclofenac at Edge Plane Pyrolytic Graphite Electrode and Its Determination in Human Urine.” Sensors and Actuators, B: Chemical 145(2): 743–48.

Goyal, Rajendra N., Sanghamitra Chatterjee, and Anoop Raj Singh Rana. 2010. “The Effect of Modifying an Edge-Plane Pyrolytic Graphite Electrode with Single-Wall Carbon Nanotubes on Its Use for Sensing Diclofenac.” Carbon 48(14): 4136–44. http://dx.doi.org/10.1016/j.carbon.2010.07.024.

Guzmán-Hernández, D. S. et al. 2017. “Taking Advantage of CTAB Micelles for the Simultaneous Electrochemical Quantification of Diclofenac and Acetaminophen in Aqueous Media.” RSC Advances 7(64): 40401–10.

Huffman, Megan L., and B. Jill Venton. 2009. “Carbon-Fiber Microelectrodes for in Vivo Applications.” Analyst 134(1): 18–24.

J. E. B. Randles. 1947. “Kinetics of Rapid Electrode Reactions.” Discussions of the Faraday Society 1(11). doi:10.1039/df9470100011.

Jin, Wenrui, and Jie Zhang. 2000. “Determination of Diclofenac Sodium by Capillary Zone Electrophoresis with Electrochemical Detection.” Journal of Chromatography A 868(1): 101–7.

Lagos Quezada, Diana Vanessa et al. 2019. “Reacciones Sistémicas Causadas Por La Toxicidad Del Diclofenaco.” Revista Científica de la Escuela Universitaria de las Ciencias de la Salud 5(1): 41–49.

Lara-Pérez, Carmen et al. 2020. “Photocatalytic Degradation of Diclofenac Sodium Salt: Adsorption and Reaction Kinetic Studies.” Environmental Earth Sciences 79(11): 1–13. https://doi.org/10.1007/s12665-020-09017-z.

Manea, Florica et al. 2010. “Electrochemical Determination of Diclofenac Sodium in Aqueous Solution on Cu-Doped Zeolite-Expanded Graphite-Epoxy Electrode.” Electroanalysis 22(17–18): 2058–63.

Martínez Ruiz, M.C. Roxana de Jesús. 2014. “‘ EFECTIVIDAD DE LA ANALGESIA EN POSOPERADAS DE CESAREA CON TRAMADOL PERIDURAL ASOCIADO A : KETOROLACO IV ( COX-1 ) vs DICLOFENACO IV ( COX-2 ) vs PARACETAMOL IV ( COX-3 ) IV .’”

Pearson, Ralph G. 1986. “Absolute Electronegativity and Hardness Correlated with Molecular Orbital Theory.” Proceedings of the National Academy of Sciences 83(22): 8440–41.

Pérez, Sandra, and Damià Barceló. 2008. “First Evidence for Occurrence of Hydroxylated Human Metabolites of Diclofenac and Aceclofenac in Wastewater Using QqLIT-MS and QqTOF-MS.” Analytical Chemistry 80(21): 8135–45.

Po, Henry N., and N. M. Senozan. 2001. “The Henderson-Hasselbalch Equation: Its History and Limitations.” Journal of Chemical Education 78(11): 1499–1503.

Saravanan, Manoharan, Subramanian Karthika, Annamalai Malarvizhi, and Mathan Ramesh. 2011. “Ecotoxicological Impacts of Clofibric Acid and Diclofenac in Common Carp (Cyprinus Carpio) Fingerlings: Hematological, Biochemical, Ionoregulatory and Enzymological Responses.” Journal of Hazardous Materials 195: 188–94. http://dx.doi.org/10.1016/j.jhazmat.2011.08.029.

Shishkina, Anastasia V., Alexander Ksenofontov, Nikita V. Penkov, and Mikhail V. Vener. 2022. “Diclofenac Ion Hydration: Experimental and Theoretical Search for Anion Pairs.” Molecules 27(10): 1–19.

Sioufi, A., F. Pommier, and J. Godbillon. 1991. “Determination of Diclofenac in Plasma and Urine by Capillary Gas Chromatography-Mass Spectrometry with Possible Simultaneous Determination of Deuterium-Labelled Diclofenac.” Journal of Chromatography B: Biomedical Sciences and Applications 571(1–2): 87–100.

De Souza, Rafael Leandro, and Matthieu Tubino. 2005. “Spectrophotometric Determination of Diclofenac in Pharmaceutical Preparations.” Journal of the Brazilian Chemical Society 16(5): 1068–73. http://www.scielo.br/j/jbchs/a/yhMcxqcs4nCvQ8MYVnmrQks/abstract/?lang=en (April 17, 2023).

Stewart, James J.P. 2013. “Optimization of Parameters for Semiempirical Methods VI: More Modifications to the NDDO Approximations and Re-Optimization of Parameters.” Journal of Molecular Modeling 19(1): 1–32. http://link.springer.com/10.1007/s00894-012-1667-x (March 4, 2020).

Stewart, James J. P., 2016. “Stewart Computational Chemistry - MOPAC Home Page.”

Tafel, Julius. 1905. “Julius Tafel.” Society, Journal of the Chemical 88: 668–76.

Zhao, Xu et al. 2009. “Electro-Oxidation of Diclofenac at Boron Doped Diamond: Kinetics and Mechanism.” Electrochimica Acta 54(17): 4172–79.

Publicado
2023-07-05
Cómo citar
Mendoza-Huizar, L. H., Moreno-Islas, M. D., Álvarez-Romero, G. A., & Ibarra-Ortega, I. S. (2023). Estudio del comportamiento electroquímico del diclofenaco en su forma aniónica y ion-par en un medio acuoso sobre un ultramicroelectrodo de fibra de carbono. Pädi Boletín Científico De Ciencias Básicas E Ingenierías Del ICBI, 11(21), 136-141. https://doi.org/10.29057/icbi.v11i21.10970

Artículos más leídos del mismo autor/a