Valorización de agroresiduos para la remoción de estradiol en agua

Palabras clave: Adsorción, agroresiduo, agua, estrógeno, estradiol

Resumen

La contaminación del agua es un tema de primordial atención, debido a la presencia de diversos agentes en efluentes y cuerpos hídricos que están ocasionando graves problemáticas ambientales. Entre estos destacan las hormonas, donde particularmente los estrógenos son ampliamente demandados en la medicina y ganadería, sin embargo, los humanos y animales no son capaces de metabolizar completamente estás moléculas, por lo que se ha reportado su presencia en diferentes cuerpos de agua, esto a su vez está generando efectos negativos en la fauna acuática. Derivado de lo anterior la recuperación de este tipo de contaminantes mediante la utilización de materiales adsorbentes sustentables como el denominado biochar, los cuales son obtenidos a partir de transformación térmica de un residuo agrícola cuya composición predominante sea lignina, puede ser una alternativa viable para la eliminación de estradiol (E2) en agua, ya que presenta capacidades de remoción similares a otros materiales carbonosos cuyo tratamiento es más complejo, costoso y limita la gestión integral de residuos.

Descargas

La descarga de datos todavía no está disponible.

Citas

Agencia Española de Medicamentos y Productos Sanitarios (AEMPS), 2022. Ficha técnica de Estradiol Meriestra 2 mg comprimidos. http://www.aemps.gob.es/

Bayode, A. A., dos Santos, D. M., Omorogie, M. O., Olukanni, O. D., Moodley, R., Bodede, O., Unuabonah, E. I. (2021). Carbon-mediated visible-light clay-Fe2O3–graphene oxide catalytic nanocomposites for the removal of steroid estrogens from water. Journal of Water Process Engineering, 40.https://doi:10.1016/j.jwpe.2020.101865.

Cavalieri, E., Frenkel, K., Liehr, J. G., Rogan, E., & Roy, D. (2000). Chapter 4: Estrogens as Endogenous Genotoxic Agents-DNA Adducts and Mutations. Journal of the National Cancer Institute Monographs, 27, 75-93. https://doi:10.1093/oxfordjournals.jncimonographs.a024247.

Do Minh, T., Song, J., Deb, A., Cha, L., Srivastava, V., & Sillanpää, M. (2020). Biochar based catalysts for the abatement of emerging pollutants: A review. Chemical Engineering Journal, 394. https://doi:10.1016/j.cej.2020.124856.

Dong, X.W., He, L.Z., Hu, H., Liu, N., Gao, S., Piao, Y.X., (2018). Removal of 17 betaestradiol by using highly adsorptive magnetic biochar nanoparticles from aqueous solution. Chem. Eng. J. 352, 371e379

Fukuhara, T., Iwasaki, S., Kawashima, M., Shinohara, O., & Abe, I. (2006). Absorbability of estrone and 17beta-estradiol in water onto activated carbon. Water Res, 40(2), 241-248.https://doi:10.1016/j.watres.2005.10.042

Gao, P., Yang, C., Liang, Z., Wang, W., Zhao, Z., Hu, B., & Cui, F. (2019). N-propyl functionalized spherical mesoporous silica as a rapid and efficient adsorbent for steroid estrogen removal: Adsorption behaviour and effects of water chemistry. Chemosphere, 214, 361-370. https://doi:10.1016/j.chemosphere.2018.09.115

Grover, D. P., Zhou, J. L., Frickers, P. E., & Readman, J. W. (2011). Improved removal of estrogenic and pharmaceutical compounds in sewage effluent by full scale granular activated carbon: impact on receiving river water. J Hazard Mater, 185(2-3), 1005-1011. https://doi:10.1016/j.jhazmat.2010.10.005

Guo, W., Lu, S., Shi, J., & Zhao, X. (2019). Effect of corn straw biochar application to sediments on the adsorption of 17alpha-ethinyl estradiol and perfluorooctane sulfonate at sediment-water interface. Ecotoxicol Environ Saf, 174, 363-369. https://doi:10.1016/j.ecoenv.2019.01.128.

Jiang, L., Liu, Y., Zeng, G., Liu, S., Hu, X., Zhou, L.,Wen, J. (2018). Adsorption of estrogen contaminants (17β-estradiol and 17α-ethynylestradiol) by graphene nanosheets from water: Effects of graphene characteristics and solution chemistry. Chemical Engineering Journal, 339, 296-302. https://doi:10.1016/j.cej.2017.12.034

Joseph, L., Boateng, L. K., Flora, J. R. V., Park, Y.-G., Son, A., Badawy, M., & Yoon, Y. (2013). Removal of bisphenol A and 17α-ethinyl estradiol by combined coagulation and adsorption using carbon nanomaterials and powdered activated carbon. Separation and Purification Technology, 107, 37-47. https://doi:10.1016/j.seppur.2013.01.012

Karki, N.P., Colombo, R.E., Gaines, K.F. et al. Exposure to 17β estradiol causes erosion of sexual dimorphism in Bluegill (Lepomis macrochirus). Environ Sci Pollut Res 28, 6450–6458 (2021). https://doi.org/10.1007/s11356-020-10935-5

Kiran Kumar, A., & Venkata Mohan, S. (2012). Removal of natural and synthetic endocrine disrupting estrogens by multi-walled carbon nanotubes (MWCNT) as adsorbent: Kinetic and mechanistic evaluation. Separation and Purification Technology, 87, 22-30. https://doi:10.1016/j.seppur.2011.11.015

Lai, K. M., Johnson, K. L., Scrimshaw, M. D., & Lester, J. N. (2000). Binding of waterborne steroid estrogens to solid phases in river and estuarine systems. Environmental science & technology, 34(18), 3890-3894. https://doi.org/10.1021/es9912729.

Li, L., Zou, D., Xiao, Z., Zeng, X., Zhang, L., Jiang, L., Liu, F. (2019). Biochar as a sorbent for emerging contaminants enables improvements in waste management and sustainable resource use. Journal of Cleaner Production, 210,1324-1342. https://doi:10.1016/j.jclepro.2018.11.087

Liu, N., Liu, Y., Tan, X., Li, M., Liu, S., Hu, X.,Wen, J. (2020). Synthesis a graphene-like magnetic biochar by potassium ferrate for 17beta-estradiol removal: Effects of Al2O3 nanoparticles and microplastics. Sci Total Environ, 715, 136723. https://doi:10.1016/j.scitotenv.2020.136723

Lyu, H.H., Zhang, Q.R., Shen, B.X., (2020). Application of biochar and its composites in catalysis. Chemosphere 240, 124842

Malyan, S. K., Kumar, S. S., Fagodiya, R. K., Ghosh, P., Kumar, A., Singh, R., & Singh, L. (2021). Biochar for environmental sustainability in the energy-water-agroecosystem nexus. Renewable and Sustainable Energy Reviews, 149. https://doi:10.1016/j.rser.2021.111379

Peiris, C., Nawalage, S., Wewalwela, J. J., Gunatilake, S. R., & Vithanage, M. (2020). Biochar based sorptive remediation of steroidal estrogen contaminated aqueous systems: A critical review. Environ Res, 191, 110183. https://doi:10.1016/j.envres.2020.110183

Pereira Oliveira R, Postigo C., López de Alda M., Daniel L. A., Barceló D. (2011). “Removal of estrogens through wáter disinfection processes and formation of products”. Chemosphere; 82:789-799. https:// 10.1016/j.chemosphere.2010.10.082.

Prontuario de Especialidades Veterinaria (2014). REFERVET. PLM México. Recuperado de https://www.diccionarioveterinarioplm.com

Ramírez-Sánchez, I. M., Martínez-Austria, P., Quiroz-Alfaro, M. A., & Bandala, E. R. (2015). Efectos de los estrógenos como contaminantes emergentes en la salud y el ambiente. Tecnología y ciencias del agua, 6(5), 31-42.

Rovani, S., Censi, M. T., Pedrotti, S. L., Jr., Lima, E. C., Cataluna, R., & Fernandes, A. N. (2014). Development of a new adsorbent from agro-industrial waste and its potential use in endocrine disruptor compound removal. J Hazard Mater, 271, 311-320. https://doi:10.1016/j.jhazmat.2014.02.004

Scaria, J., Gopinath, A., Ranjith, N., Ravindran, V., Ummar, S., Nidheesh, P. V., & Kumar, M. S. (2022). Carbonaceous materials as effective adsorbents and catalysts for the removal of emerging contaminants from water. Journal of Cleaner Production, 350. https://doi:10.1016/j.jclepro.2022.131319

Schafer, A. I., Akanyeti, I., & Semiao, A. J. (2011). Micropollutant sorption to membrane polymers: a review of mechanisms for estrogens. Adv Colloid Interface Sci, 164(1-2), 100-117. https:// doi:10.1016/j.cis.2010.09.006

Shukla, P., Giri, B. S., Mishra, R. K., Pandey, A., & Chaturvedi, P. (2021). Lignocellulosic biomass-based engineered biochar composites: A facile strategy for abatement of emerging pollutants and utilization in industrial applications. Renewable and Sustainable Energy Reviews, 152. https://doi:10.1016/j.rser.2021.111643

Silva, C. P., Otero, M., & Esteves, V. (2012). Processes for the elimination of estrogenic steroid hormones from water: a review. Environ Pollut, 165, 38-58. https://doi:10.1016/j.envpol.2012.02.002

Sun, K., Ro, K., Guo, M., Novak, J., Mashayekhi, H., & Xing, B. (2011). Sorption of bisphenol A, 17alpha-ethinyl estradiol and phenanthrene on thermally and hydrothermally produced biochars. Bioresour Technol, 102(10), 5757-5763. https://doi:10.1016/j.biortech.2011.03.038.

Tao, H.Y., Ge, H., Shi, J.H., Liu, X.W., Guo, W., Zhang, M.T., Meng, Y.B., Li, X.Y.,(2019).The characteristics of oestrone mobility in water and soil by the addition of Cabiochar and Fe-Mn-biochar derived from Litchi chinensis Sonn. Environ. Geochem. Health. https://doi.org/10.1007/s10653-10019-00477-10652.

Torres, N. H., Santos, G. D. O. S., Ferreira, L. F. R., Américo-Pinheiro, J. H. P., Eguiluz, K. I. B., & Salazar-Banda, G. R. (2021). Environmental aspects of hormones estriol, 17β-estradiol and 17α-ethinylestradiol: Electrochemical processes as next-generation technologies for their removal in water matrices. Chemosphere, 267, 128888.https://10.1016/j.chemosphere.2020.128888

Vieira, R. A. L., Pickler, T. B., Segato, T. C. M., Jozala, A. F., & Grotto, D. (2022). Biochar from fungiculture waste for adsorption of endocrine disruptors in water. Sci Rep, 12(1), 6507. https://doi:10.1038/s41598-022-10165-4

Wang, X., Liu, N., Liu, Y., Jiang, L., Zeng, G., Tan, X., Li, J. (2017). Adsorption Removal of 17beta-Estradiol from Water by Rice Straw-Derived Biochar with Special Attention to Pyrolysis Temperature and Background Chemistry. Int J Environ Res Public Health, 14(10). https://doi:10.3390/ijerph14101213.

Wang, Z.J., Sun, P.Z., Li, Y.X., Meng, T., Li, Z.P., Zhang, X., Zhang, R.C., Jia, H.Z., Yao, H.,(2019). Reactive nitrogen species mediated degradation of estrogenic disrupting chemicals by biochar/monochloramine in buffered water and synthetic hydrolyzed urine. Environ. Sci. Technol. 53. https://doi.org/10.1021/acs.est.9b04704

Xu, H., Han, Y., Wang, G., Deng, P., & Feng, L. (2022). Walnut shell biochar based sorptive remediation of estrogens polluted simulated wastewater: Characterization, adsorption mechanism and degradation by persistent free radicals. Environmental Technology & Innovation, 28. https:// doi:10.1016/j.eti.2022.102870

Yasir, M., Šopík, T., Patwa, R., Kimmer, D., & Sedlařík, V. (2021). Adsorption of Estrogenic Hormones in Aqueous Solution Using Electrospun Nanofibers From Waste Cigarette Butts: Kinetics, Mechanism, and Reusability. Express Polymer Letters. https://doi:10.21203/rs.3.rs-837192/v1

Zhang, P., Liu, S.B., Tan, X.F., Liu, Y.G., Zeng, G.M., Yin, Z.H., Ye, S.J., Zeng, Z.W., (2019). Microwave-assisted chemical modification method for surface regulation of

biochar and its application for estrogen removal. Process Saf. Environ. Protect.128, 329e341. https://doi.org/10.1016/j.psep.2019.06.009

Zhang, F., Wei, Z., & Wang, J. J. (2021). Integrated application effects of biochar and plant residue on ammonia loss, heavy metal immobilization, and estrogen dissipation during the composting of poultry manure. Waste Manag, 131, 117-125. https://doi:10.1016/j.wasman.2021.05.037

Publicado
2023-07-05
Cómo citar
Cortes-Cruz, A. G., Hernández-Juárez, M., Bonilla-Petriciolet, A., Acevedo-Sandoval, O. A., & Velázquez-Jiménez, R. (2023). Valorización de agroresiduos para la remoción de estradiol en agua. Pädi Boletín Científico De Ciencias Básicas E Ingenierías Del ICBI, 11(21), 151-157. https://doi.org/10.29057/icbi.v11i21.11034

Artículos más leídos del mismo autor/a