Bioquímica de la pared celular de Gram positivas y Gram negativas

Autores/as

DOI:

https://doi.org/10.29057/icbi.v12i23.11450

Palabras clave:

Lipopolisacárido, pared celular, ácidos teicoicos, bioquímica, peptidoglucano

Resumen

La pared celular de las bacterias es una estructura compleja en forma de malla, esencial para mantener la morfología, integridad estructural y coordinar diferentes propiedades de la célula. Entre las diferentes especies de bacterias, se observa cierta homología en la composición y estructura de la pared celular. Por lo tanto, en este trabajo se describe a detalle la composición bioquímica de las estructuras específicas, así como la diversidad estructural que puede existir entre bacterias de la misma especie debido a adaptaciones a diferentes entornos de crecimiento. Además, la composición bioquímica y las estructuras superficialesde la pared celular bacteriana representan la primera línea de defensa contra diversas reacciones químicas y físicas. La importancia médica se relaciona con la patogenia y las adaptaciones bioquímicas generadas para la resistencia a los antibióticosy la evasión inmunológica, modulando sus superficies celulares y liberando moléculas para el camuflaje con el hospedero, que complican el éxito para controlar las infecciones bacterianas y obligan a la búsqueda de múltiples estrategias que permitan eliminar su desarrollo o crecimiento.

Descargas

Los datos de descargas todavía no están disponibles.

Información de Publicación

Metric
Este artículo
Otros artículos
Revisores por pares 
2.4 promedio

Perfiles de revisores  N/D

Declaraciones del autor

Declaraciones del autor
Este artículo
Otros artículos
Disponibilidad de datos 
N/A
16%
Financiamiento externo 
No
32% con financiadores
Intereses conflictivos 
N/D
11%
Metric
Para esta revista
Otras revistas
Artículos aceptados 
86%
33%
Días hasta la publicación 
341
145

Indexado en

Editor y comité editorial
perfiles
Sociedad académica 
N/D

Citas

Aasjord, P.E.R., Nyland, H.A.R.A.L.D. & Matre, R.O.A.L.D. (1986). The mitogenic properties of lipoteichoic acid from Staphylococcus aureus. Acta Pathologica Microbiologica Scandinavica Series C: Immunology, 94(1‐6), 91-96.

Alves, E., Melo, T., Simões, C., Faustino, M.A.F., Tomé, J.P.C., Neves, M.G.P.M.S, Cavaleiro, J.A.S, Cunha, Â., Gomes, N.C.M., Domingues, P., Domingues, M.R.M. & Almeida, A. (2013). Photodynamic oxidation of Staphylococcus warneri membrane phospholipids: new insights based on lipidomics. Rapid Communications in Mass Spectrometry, 27(14),1607–1618. https://doi.org/10.1002/rcm.6614

Balboa, J.A., Estrada, J., Nápoles, D.L., Aguilar, S., González, H., Hernández, D., Aranguren, Y., Garrido, Y., Cardoso, M., Puentes, G., Barberá, R.  Sierra G. (2008). Purificación de lipopolisacárido de Neisseria meningitidis a partir de una fracción colateral del proceso de producción de VAMENGOC-BC®. Vaccimonitor, 17(1),17-26. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1025-028X2008000100003&lng=es&tlng=es.

Beachey, E.H., Giampapa, C.S., & Abraham, S.N. (1988). Bacterial adherence: adhesin receptor-mediated attachment of pathogenic bacteria to mucosal surfaces. American Review of Respiratory Disease, 138, S45-S48. doi: 10.1164/ajrccm/138.6_Pt_2.S45

Beeby, M., Gumbart, J.C., Roux, B. & Jensen, G.J. (2013). Architecture and assembly of the Gram-positive cell wall. Molecular Microbiology, 88(4),664-672. https://doi:10.1111/mmi.12203

Beynon, L.M., Richards, J.C. & Perry, M.B. (1994). The structure of the lipopolysaccharide O antigen from Yersinia ruckeri serotype 01. Carbohydrate Research, 256(2),303–317. https://doi.org/10.1016/0008-6215(94)84215-9

Bonhomme, D., Santecchia, I., Vernel-Pauillac, F., Caroff, M., Germon, P., Murray, G., Adler, B., Boneca, I.G.  Wert, C. (2020) Correction: Leptospiral LPS escapes mouse TLR4 internalization and TRIF-associated antimicrobial responses through O antigen and associated lipoproteins. PLOS Pathogens, 16(12), e1009173. https://doi.org/10.1371/journal.ppat.1009173

Brown, S., Santa Maria, J.P.Jr. & Walker, S. (2013). Wall teichoic acids of gram-positive bacteria. Annual Review of Microbiology, 67,313-336. https://doi:10.1146/annurev-micro-092412-155620

Cox, F., Cook, E., & Lutcher, C. (1986). Lack of toxicity of oral and intrapulmonary group B streptococcal lipoteichoic acid. Pediatric research, 20(11), 1168-1173.

Crump G.M., Zhou, J., Mashayekh, S. & Grimes, C.L. (2020). Revisiting peptidoglycan sensing: interactions with host immunity and beyond. Chemical Communications (Camb), 56(87),13313-13322. doi: 10.1039/d0cc02605k.

Dehus, O., Pfitzenmaier, M., Stuebs, G., Fischer, N., Schwaeble, W., Morath, S., Hartung, T., Geyer A. & Hermann, C. (2011). Growth temperature-dependent expression of structural variants of Listeria monocytogenes lipoteichoic acid. Immunobiology, 216(1-2),24–31. https://doi.org/10.1016/j.imbio.2010.03.008

Dörr, T., Delgado, F., Umans, B.D., Gerding, M.A., Davis, B.M. & Waldor, M.K. (2016). A Transposon Screen Identifies Genetic Determinants of Vibrio cholerae Resistance to High-Molecular-Weight Antibiotics. Antimicrobial agents and chemotherapy, 60(8),4757–4763. https://doi.org/10.1128/AAC.00576-16

Dörr, T., Moynihan, J.P. & Mayer, C. (2019). Editorial: Bacterial Cell Wall Structure and Dynamics. Frontiers in Microbiology, 10,2051. https://doi.org/10.3389/fmicb.2019.02051

Erickson, K.E., Otoupal, P.B. & Chatterjee, A. (2015). Gene expression variability underlies adaptive resistance in phenotypically heterogeneous bacterial populations. ACS Infectious Diseases, 1(11), 555-567. https://doi.org/10.1021/acsinfecdis.5b00095

Frirdich, E. & Whitfield, C. (2005). Lipopolysaccharide inner core oligosaccharide structure and outer membrane stability inhuman pathogens belonging to the Enterobacteriaceae. Journal of Endotoxin Research, 11(3),133-144. https://doi.org/10.1177/09680519050110030201

Gamian, A., Jones, C., Lipinski, T., Korzeniowska-Kowal, A. & Ravenscroft, N. (2000). Structure of the sialic acid containing O-specific polysaccharide from Salmonella enterica serovar Toucra O48 lipopolysaccharide. European Journal of Biochemistry, 267(11),3160–3166. https://doi:10.1046/j.1432-1327.2000.01335.x

Gisch, N., Kohler, T., Ulmer, A.J., Muthing, J., Pribyl, T., Fischer, K., Lindner, B., Hammerschmidt, S. & Zahringer, U. (2013). Structural reevaluation of Streptococcus pneumoniae lipoteichoic acid and new insights into its immunostimulatory potency. Journal of Biological Chemistry, 288(22),15654–15667. https://doi:10.1074/jbc.M112.446963

Gumbart, C.J., Beeby, M., Jensen, J.G. & Roux, B. (2014). Escherichia coli Peptidoglycan structure and mechanics as predicted by atomic-scale simulations. PLOS Computational Biology, 10(2),1-10.

Haag, A.F., Wehmeie,r S., Muszyński, A., Kerscher, B., Fletcher, V., Berry, S.H., Hold, G.L., Carlson, R.W. & Ferguson, G.P. (2011). Biochemical Characterization of Sinorhizobium meliloti Mutants Reveals Gene Products Involved in the Biosynthesis of the Unusual Lipid A Very Long-chain Fatty Acid. The Journal of Biological Chemistry, 286(20),17455-17466. https://doi:10.1074/jbc.M111.236356

Hughes, V., Jiang, C. & Brun, Y. (2012). Caulobacter crescentus. Current Biology, 22(13), R507-R509. https://doi:10.1016/j.cub.2012.05.036

Hwang, H., Paracini, N., Parks, J.M., Lakey, J.H. & Gumbart, J.C. (2018). Distribution of mechanical stress in the Escherichia coli cell envelope. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1860(12),2566-2575. https://doi.org/10.1016/j.bbamem.2018.09.020.

Jutras, B.L., Lochhead, R.B., Kloos, Z.A., Biboy, J., Strle, K., Booth, C.J., Govers, S.K., Gray, J., Schumann, P., Vollmer, W., Bockenstedt, L.K., Steere, A.C. & Jacobs-Wagner, C. (2019). Borrelia burgdorferi peptidoglycan is a persistent antigen in patients with Lyme arthritis. Proceedings of the National Academy of Sciences of the United States of America (PNAS USA), 116, 13498–13507. https://doi.org/10.1073/pnas.1904170116

Kang, S-S., Sim, J-R., Yun, C-H. & Han, S.H. (2016). Lipoteichoic acids as a major virulence factor causing inflammatory responses via Toll-like receptor 2. Archives of Pharmacal Research, 39(11),1519–1529. https://doi:10.1007/s12272-016-0804-y

Kauffmann, F. (1972). Serological diagnosis of salmonella-species. Kauffmann-White-Schema. Serological diagnosis of salmonella-species. Kauffmann-White-Schema.

Kengatharan, K.M., De Kimpe, S., Robson, C., Foster, S.J., & Thiemermann, C. (1998). Mechanism of gram-positive shock: identification of peptidoglycan and lipoteichoic acid moieties essential in the induction of nitric oxide synthase, shock, and multiple organ failure. The Journal of experimental medicine, 188(2), 305-315. https://doi.org/10.1084/jem.188.2.305

Kramer, N.E., Smid, E.J., Kok, J., de Kruijfz, B., Kuipers, O.P. & Breukink, E. (2004). Resistance of Gram-positive bacteria to nisin is not determined by lipid II levels. FEMS microbiology letters, 239(1),157-161. https://doi.org/10.1016/j.femsle.2004.08.033

Le Brun, A.P., Clifton, L.A., Halbert, C.E., Lin, B., Meron, M., Holden, P.J., Lakey, J.H. & Holt, S.A. (2013). Structural characterization of a model Gram-negative bacterial surface using lipopolysaccharides from rough strains of Escherichia coli. Biomacromolecules, 14(6),2014-2022. https://doi:10.1021/bm400356m

Lerouge, I., & Vanderleyden, J. (2002). O-antigen structural variation: mechanisms and possible roles in animal/plant–microbe interactions. FEMS microbiology reviews, 26(1), 17-47. https://doi.org/10.1111/j.1574-6976.2002.tb00597.x

Liu, B., Furevi, A., Perepelo, A.V., Guo, X., Cao, H., Wang, Q., Reeves, P.R., Knirel, Y.A., Wang L. & Widmalm, G. (2019). Structure and genetics of Escherichia coli O antigens. FEMS Microbiology Reviews, 44(6),655–683. https://doi:10.1093/femsre/fuz028

Lodowska, J., Wolny, D., Jaworska-Kik, M., Kurkiewicz, S., Dzierżewicz, Z. & Węglarz, L. (2012). The Chemical Composition of Endotoxin Isolated from Intestinal Strain of Desulfovibrio desulfuricans. Scientific World Journal, 1-10. https://doi:10.1100/2012/647352

Madigan, M.T., Martinko, J.M., Bender, K.S., Buckley, D.H. & Stah, D.A. (2015). Microbial Cell Structure and Function. En Madigan, M.T., Martinko, J.M., Bender, K.S., Buckley, D.H., Stah, D.A. (Ed.). Brock biology of microorganisms. (pp. 25-76). Illinois, USA. ISBN 978-0-321-89739-81.

Mandrell, R.E. & Apicella, M.A. (1993). Lipo-oligosaccharides (LOS) of mucosal pathogens: molecular mimicry and host-modification of LOS. Immunobiology, 187(3-5),382-402. https://doi.org/10.1016/S0171-2985(11)80352-9

Maria-neto, S., de Almeida, K.C., Macedo, M.L.R. & Franco, O.L. (2015). Understanding bacterial resistance to antimicrobial peptides: From the surface to deep inside. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1848(11 Pt B),3078-3088. https://pubmed.ncbi.nlm.nih.gov/25724815/

Matsuura, M. (2013). Structural modifications of bacterial lipopolysaccharide that facilitate Gram-negative bacteria evasion of host innate immunity. Frontiers in Immunology, 4,1-10. https://doi.org/10.3389/fimmu.2013.00109

Mengin-Lecreulx, D. & Lemaitre, B. (2005). Structure and metabolism of peptidoglycan and molecular requirements allowing its detection by the Drosophila innate inmune system. Journal of Endotoxin Research, 11(2),109-111. https://doi/abs/10.1177/09680519050110020601

Murray, G.L, Attridge, S.R. & Morona, R. (2006). Altering the length of the lipopolysaccharide O antigen has an impact on the interaction of Salmonella enterica serovar Typhimurium with macrophages and complement. Journal Bacteriology, 188,2735–2739. doi: 10.1128/JB.188.7.2735-2739.2006.

Nikolic, P. & Mudgil P. (2023). The Cell Wall, Cell Membrane and Virulence Factors of Staphylococcus aureus and Their Role in Antibiotic Resistance. Microorganisms, 11(2),259. https://doi.org/10.3390/microorganisms11020259

Ormeño-Orrillo, E. (2005). Lipopolisacáridos de Rhizobiaceae: estructura y biosíntesis. Revista Latinoamericana de Microbiología, 47(3-4),165-175. https://www.medigraphic.com/pdfs/lamicro/mi-2005/mi05-3_4l.pdf

Palusiak, A. (2016). Classification of Proteus penneri lipopolysaccharides into core region serotypes. Medical Microbiology and Immunology, 205(6),615–624. https://doi.org/10.1007/s00430-016-0468-8

Patra, K.P., Choudhury, B., Matthias, M.M., Baga, S., Bandyopadhya, K. & Vinetz, J.M. (2015). Comparative analysis of lipopolysaccharides of pathogenic and intermediately pathogenic Leptospira species. BMC microbiology, 15,244. https://doi.org/10.1186/s12866-015-0581-7

Qian, J., Garrett, T.A. & Raetz, C.R.H. (2014). In Vitro Assembly of the Outer Core of the Lipopolysaccharide from Escherichia coli K-12 and Salmonella typhimurium. 2014. Biochemistry, 53(8),1250–1262. https://doi.org/10.1021/bi4015665

Raetz, C.R.H. & Whitfield, C. (2002). Lipopolysaccharide endotoxins. Annual Review of Biochemistry, 71,635-700. https://doi:10.1146/annurev.biochem.71.110601.135414

Rapicavoli, J.N., Blanco-Ulate, B., Muszyński, A., Figueroa-Balderas, R., Morales-Cruz, A., Azadi, P., Dobruchowska, J.M., Castro, C., Cantu, D. & Roper M.C. (2018). Lipopolysaccharide O-antigen delays plant innate immune recognition of Xylella fastidiosa. Nature Communications, 9(1),1-12. https://doi.org/10.1038/s41467-018-02861-5

Rietschel, E.T., Kirikae, T., Schade, F.U., Mamat, U., Schmidt, G., Loppnow, H., Ulmer, A.J., Zähringer, U., Seydel, U., Di Padova, F., Schreier, M.  Brade H. (1994). Bacterial endotoxin: molecular relationships of structure to activity and function. FASEB Journal, 8(2),217-25. doi: 10.1096/fasebj.8.2.8119492. PMID: 8119492.

Romaniuk, J.A.H. & Cegelski, L. (2015). Bacterial cell wall composition and the influence of antibiotics by cell-wall and whole-cell NMR. Philosophical Transactions of the Royal Society B: Biological Sciences, 370,1-14. https://doi/pdf/10.1098/rstb.2015.0024

Rothschild, L.J. & Mancinelli, R.L. (2001). Life in extreme environments. Nature, 409,1092-1101. https://www.nature.com/articles/35059215

Rodríguez-Angeles, G. (2002). Principales características y diagnóstico de los grupos patógenos de Escherichia coli. Salud pública de México, 44(5), 464-475.

Schaub, R.E. & Dillard, J.P. (2019). The Pathogenic Neisseria Use a Streamlined Set of Peptidoglycan Degradation Proteins for Peptidoglycan Remodeling, Recycling, and Toxic Fragment Release. Frontiers in Microbiology, 10,1-12. https://doi.org/10.3389/fmicb.2019.00073

Schneewind, O. & Missiakas, D. (2014). Lipoteichoic Acids, Phosphate-Containing Polymers in the Envelope of Gram-Positive Bacteria. Journal of Bacteriology, 196(6),1133–1142. https://jb.asm.org/content/jb/196/6/1133.full.pdf

Schleifer, K.H. & Kandler, O. (1972). Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriological Reviews, 36, 407-477. DOI: https://doi.org/10.1128/br.36.4.407-477.1972

Schneider, T. & Sahl, H.G. (2010). An oldie but a goodie-cell wall biosynthesis as antibiotic target pathway. International Journal of Medical Microbiology, 300(2-3),161–169. https://doi:10.1016/j.ijmm.2009.10.005

Schumann, P. (2011). 5 Peptidoglycan structure. Methods in microbiology, 38,101-129. https:// doi: 10.1016/B978-0-12-387730-7.00005-X

Shashkov, A.S., Kosmachevskaya, L.N., Streshinskaya, G.M., Evtushenko, L.I., Bueva, O.V., Denisenko, V.A., Naumova, I.B. & Stackebrandt, E. (2002). Cell wall anionic polymers of Streptomyces sp. MB-8, the causative agent of potato scab E. Carbohydrate Research, 337(21-23),2255-2261. https://doi.org/10.1016/S0008-6215(02)00188-X

Shiraishi, T., Yokota, S., Fukiya, S. & Yokota, A. (2016). Structural diversity and biological significance of lipoteichoic acid in Gram-positive bacteria: focusing on beneficial probiotic lactic acid bacteria. Bioscience of Microbiota, Food and Health, 35(4),147–161. https://doi.org/10.12938/bmfh.2016-006.

Singh, O.V. & Gabani, P. (2011). Extremophiles: radiation resistance microbial reserves and therapeutic implications. Journal of Applied Microbiology, 110(4),851-861. https://doi.org/10.1111/j.1365-2672.2011.04971.x

Sohlenkamp, C., Raetz, C.R.H. & Ingram, B.O. (2013). The calcium-stimulated lipid A 3-O deacylase from Rhizobium etli is not essential for plant nodulation. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, 1831(7), 1250-1259. https://doi.org/10.1016/j.bbalip.2013.04.002

Stimulants, N. L. (2000). Interactions of CD14 with components of gram-positive bacteria. CD14 in the Inflammatory Response, 74, 83-107.

Swoboda, J.G., Campbell, J., Meredith, T.C. & Walker, S. (2010). Wall teichoic acid function, biosynthesis, and inhibition. Chembiochem, 11(1),35–45. https://doi:10.1002/cbic.200900557

Sychantha, D., Brott, A.S., Jones, C.S. & Clarke, A.J. (2018). Mechanistic Pathways for Peptidoglycan O-Acetylation and De-O-Acetylation. Frontiers in microbiology, 9,1-17. https://doi.org/10.3389/fmicb.2018.02332

Troncoso, C., Pavez, M., Santos, A., Salazar, R. & Barrientos, L. (2017). Structural and Physiological Implications of Bacterial Cell in Antibiotic Resistance Mechanisms. International Journal of Morphology, 35(4),1214-1223. http://dx.doi.org/10.4067/S0717-95022017000401214

Turner, R.D., Mesnage, S., Hobbs, J.K. & Foster, S.J. (2018). Molecular imaging of glycan chains couples cell-wall polysaccharide architecture to bacterial cell morphology. Nature communications, 9,1-8. https://doi.org/10.1038/s41467-018-03551-y

Vinogradov, E., MacLean, L.L. & Perry, M.B. (2010). Structural determination of the O-antigenic polysaccharide of enteropathogenic Escherichia coli O103:H2. Canadian Journal of Microbiology, 56(5),366-372. https://doi.org/10.1139/W10-015

Vollmer, W. & Seligman, S.J. (2010). Architecture of peptidoglycan: more data and more models. Trends in Microbiology, 18(2),59-66. https://doi: 10.1016/j.tim.2009.12.004

Watanabe, S., Zenke, K. & Muroi, M. (2023). Lipoteichoic Acid Inhibits Lipopolysaccharide-Induced TLR4 Signaling by Forming an Inactive TLR4/MD-2 Complex Dimer. Journal of Immunology, 210(9),1386–1395. https://doi.org/10.4049/jimmunol.2200872

Weidenmaier, C. & Peschel, A. (2008). Teichoic acids and related cell-wall glycopolymers in Gram-positive physiology and host interactions. Nature Reviews Microbiology, 6(4),276-287. https://doi:10.1038/nrmicro1861

Yadav, K.A., Espaillat, A. & Cava, F. (2018). Bacterial Strategies to Preserve Cell Wall Integrity Against Environmental Threats. Frontiers in Microbiology, 9,2064. doi: 10.3389/fmicb.2018.02064

Descargas

Publicado

2024-07-05

Cómo citar

Cuervo-Parra, J. A., Aparicio-Burgos, J. E., Pérez-España, V. H., Morales-Ovando, M. A., Peralta-Gil, M., & Romero-Cortes, T. (2024). Bioquímica de la pared celular de Gram positivas y Gram negativas. Pädi Boletín Científico De Ciencias Básicas E Ingenierías Del ICBI, 12(23), 1–8. https://doi.org/10.29057/icbi.v12i23.11450

Número

Sección

Artículos de revisión