Bioquímica de la pared celular de Gram positivas y Gram negativas

Palabras clave: Lipopolisacárido, pared celular, ácidos teicoicos, bioquímica, peptidoglucano

Resumen

La pared celular de bacterias es una estructura compleja en forma de malla, esencial para el mantenimiento de la forma, integridad estructural y coordinación de las diferentes propiedades de las células. Cada especie mantiene cierta homología en la composición y estructura de la pared; sin embargo, existen variables que influyen en las estructuras específicas, como: etapa de crecimiento, medio de cultivo, cambios de temperatura, pH, salinidad, presión, entre otros. La diversidad estructural puede existir entre individuos de la misma especie y representa adaptaciones a diferentes entornos de crecimiento. La pared celular de bacterias Gram positivas y Gram negativas se distingue fácilmente por la cantidad de peptidoglicano (PG). Conocer las diferencias bioquímicas de la pared celular de estos organismos procariotas, permitirá tener mayor comprensión de las propiedades fisiológicas de cada grupo, de las técnicas de tinción para la diferenciación y su adaptación ante condiciones de estrés.

Descargas

La descarga de datos todavía no está disponible.

Citas

Aasjord, P.E.R., Nyland, H.A.R.A.L.D. & Matre, R.O.A.L.D. (1986). The mitogenic properties of lipoteichoic acid from Staphylococcus aureus. Acta Pathologica Microbiologica Scandinavica Series C: Immunology, 94(1‐6), 91-96.

Alves, E., Melo, T., Simões, C., Faustino, M.A.F., Tomé, J.P.C., Neves, M.G.P.M.S, Cavaleiro, J.A.S, Cunha, Â., Gomes, N.C.M., Domingues, P., Domingues, M.R.M. & Almeida, A. (2013). Photodynamic oxidation of Staphylococcus warneri membrane phospholipids: new insights based on lipidomics. Rapid Communications in Mass Spectrometry, 27(14),1607–1618. https://doi.org/10.1002/rcm.6614

Balboa, J.A., Estrada, J., Nápoles, D.L., Aguilar, S., González, H., Hernández, D., Aranguren, Y., Garrido, Y., Cardoso, M., Puentes, G., Barberá, R.  Sierra G. (2008). Purificación de lipopolisacárido de Neisseria meningitidis a partir de una fracción colateral del proceso de producción de VAMENGOC-BC®. Vaccimonitor, 17(1),17-26. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1025-028X2008000100003&lng=es&tlng=es.

Beachey, E.H., Giampapa, C.S., & Abraham, S.N. (1988). Bacterial adherence: adhesin receptor-mediated attachment of pathogenic bacteria to mucosal surfaces. American Review of Respiratory Disease, 138, S45-S48. doi: 10.1164/ajrccm/138.6_Pt_2.S45

Beeby, M., Gumbart, J.C., Roux, B. & Jensen, G.J. (2013). Architecture and assembly of the Gram-positive cell wall. Molecular Microbiology, 88(4),664-672. https://doi:10.1111/mmi.12203

Beynon, L.M., Richards, J.C. & Perry, M.B. (1994). The structure of the lipopolysaccharide O antigen from Yersinia ruckeri serotype 01. Carbohydrate Research, 256(2),303–317. https://doi.org/10.1016/0008-6215(94)84215-9

Bonhomme, D., Santecchia, I., Vernel-Pauillac, F., Caroff, M., Germon, P., Murray, G., Adler, B., Boneca, I.G.  Wert, C. (2020) Correction: Leptospiral LPS escapes mouse TLR4 internalization and TRIF-associated antimicrobial responses through O antigen and associated lipoproteins. PLOS Pathogens, 16(12), e1009173. https://doi.org/10.1371/journal.ppat.1009173

Brown, S., Santa Maria, J.P.Jr. & Walker, S. (2013). Wall teichoic acids of gram-positive bacteria. Annual Review of Microbiology, 67,313-336. https://doi:10.1146/annurev-micro-092412-155620

Cox, F., Cook, E., & Lutcher, C. (1986). Lack of toxicity of oral and intrapulmonary group B streptococcal lipoteichoic acid. Pediatric research, 20(11), 1168-1173.

Crump G.M., Zhou, J., Mashayekh, S. & Grimes, C.L. (2020). Revisiting peptidoglycan sensing: interactions with host immunity and beyond. Chemical Communications (Camb), 56(87),13313-13322. doi: 10.1039/d0cc02605k.

Dehus, O., Pfitzenmaier, M., Stuebs, G., Fischer, N., Schwaeble, W., Morath, S., Hartung, T., Geyer A. & Hermann, C. (2011). Growth temperature-dependent expression of structural variants of Listeria monocytogenes lipoteichoic acid. Immunobiology, 216(1-2),24–31. https://doi.org/10.1016/j.imbio.2010.03.008

Dörr, T., Delgado, F., Umans, B.D., Gerding, M.A., Davis, B.M. & Waldor, M.K. (2016). A Transposon Screen Identifies Genetic Determinants of Vibrio cholerae Resistance to High-Molecular-Weight Antibiotics. Antimicrobial agents and chemotherapy, 60(8),4757–4763. https://doi.org/10.1128/AAC.00576-16

Dörr, T., Moynihan, J.P. & Mayer, C. (2019). Editorial: Bacterial Cell Wall Structure and Dynamics. Frontiers in Microbiology, 10,2051. https://doi.org/10.3389/fmicb.2019.02051

Erickson, K.E., Otoupal, P.B. & Chatterjee, A. (2015). Gene expression variability underlies adaptive resistance in phenotypically heterogeneous bacterial populations. ACS Infectious Diseases, 1(11), 555-567. https://doi.org/10.1021/acsinfecdis.5b00095

Frirdich, E. & Whitfield, C. (2005). Lipopolysaccharide inner core oligosaccharide structure and outer membrane stability inhuman pathogens belonging to the Enterobacteriaceae. Journal of Endotoxin Research, 11(3),133-144. https://doi.org/10.1177/09680519050110030201

Gamian, A., Jones, C., Lipinski, T., Korzeniowska-Kowal, A. & Ravenscroft, N. (2000). Structure of the sialic acid containing O-specific polysaccharide from Salmonella enterica serovar Toucra O48 lipopolysaccharide. European Journal of Biochemistry, 267(11),3160–3166. https://doi:10.1046/j.1432-1327.2000.01335.x

Gisch, N., Kohler, T., Ulmer, A.J., Muthing, J., Pribyl, T., Fischer, K., Lindner, B., Hammerschmidt, S. & Zahringer, U. (2013). Structural reevaluation of Streptococcus pneumoniae lipoteichoic acid and new insights into its immunostimulatory potency. Journal of Biological Chemistry, 288(22),15654–15667. https://doi:10.1074/jbc.M112.446963

Gumbart, C.J., Beeby, M., Jensen, J.G. & Roux, B. (2014). Escherichia coli Peptidoglycan structure and mechanics as predicted by atomic-scale simulations. PLOS Computational Biology, 10(2),1-10.

Haag, A.F., Wehmeie,r S., Muszyński, A., Kerscher, B., Fletcher, V., Berry, S.H., Hold, G.L., Carlson, R.W. & Ferguson, G.P. (2011). Biochemical Characterization of Sinorhizobium meliloti Mutants Reveals Gene Products Involved in the Biosynthesis of the Unusual Lipid A Very Long-chain Fatty Acid. The Journal of Biological Chemistry, 286(20),17455-17466. https://doi:10.1074/jbc.M111.236356

Hughes, V., Jiang, C. & Brun, Y. (2012). Caulobacter crescentus. Current Biology, 22(13), R507-R509. https://doi:10.1016/j.cub.2012.05.036

Hwang, H., Paracini, N., Parks, J.M., Lakey, J.H. & Gumbart, J.C. (2018). Distribution of mechanical stress in the Escherichia coli cell envelope. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1860(12),2566-2575. https://doi.org/10.1016/j.bbamem.2018.09.020.

Jutras, B.L., Lochhead, R.B., Kloos, Z.A., Biboy, J., Strle, K., Booth, C.J., Govers, S.K., Gray, J., Schumann, P., Vollmer, W., Bockenstedt, L.K., Steere, A.C. & Jacobs-Wagner, C. (2019). Borrelia burgdorferi peptidoglycan is a persistent antigen in patients with Lyme arthritis. Proceedings of the National Academy of Sciences of the United States of America (PNAS USA), 116, 13498–13507. https://doi.org/10.1073/pnas.1904170116

Kang, S-S., Sim, J-R., Yun, C-H. & Han, S.H. (2016). Lipoteichoic acids as a major virulence factor causing inflammatory responses via Toll-like receptor 2. Archives of Pharmacal Research, 39(11),1519–1529. https://doi:10.1007/s12272-016-0804-y

Kauffmann, F. (1972). Serological diagnosis of salmonella-species. Kauffmann-White-Schema. Serological diagnosis of salmonella-species. Kauffmann-White-Schema.

Kengatharan, K.M., De Kimpe, S., Robson, C., Foster, S.J., & Thiemermann, C. (1998). Mechanism of gram-positive shock: identification of peptidoglycan and lipoteichoic acid moieties essential in the induction of nitric oxide synthase, shock, and multiple organ failure. The Journal of experimental medicine, 188(2), 305-315. https://doi.org/10.1084/jem.188.2.305

Kramer, N.E., Smid, E.J., Kok, J., de Kruijfz, B., Kuipers, O.P. & Breukink, E. (2004). Resistance of Gram-positive bacteria to nisin is not determined by lipid II levels. FEMS microbiology letters, 239(1),157-161. https://doi.org/10.1016/j.femsle.2004.08.033

Le Brun, A.P., Clifton, L.A., Halbert, C.E., Lin, B., Meron, M., Holden, P.J., Lakey, J.H. & Holt, S.A. (2013). Structural characterization of a model Gram-negative bacterial surface using lipopolysaccharides from rough strains of Escherichia coli. Biomacromolecules, 14(6),2014-2022. https://doi:10.1021/bm400356m

Lerouge, I., & Vanderleyden, J. (2002). O-antigen structural variation: mechanisms and possible roles in animal/plant–microbe interactions. FEMS microbiology reviews, 26(1), 17-47. https://doi.org/10.1111/j.1574-6976.2002.tb00597.x

Liu, B., Furevi, A., Perepelo, A.V., Guo, X., Cao, H., Wang, Q., Reeves, P.R., Knirel, Y.A., Wang L. & Widmalm, G. (2019). Structure and genetics of Escherichia coli O antigens. FEMS Microbiology Reviews, 44(6),655–683. https://doi:10.1093/femsre/fuz028

Lodowska, J., Wolny, D., Jaworska-Kik, M., Kurkiewicz, S., Dzierżewicz, Z. & Węglarz, L. (2012). The Chemical Composition of Endotoxin Isolated from Intestinal Strain of Desulfovibrio desulfuricans. Scientific World Journal, 1-10. https://doi:10.1100/2012/647352

Madigan, M.T., Martinko, J.M., Bender, K.S., Buckley, D.H. & Stah, D.A. (2015). Microbial Cell Structure and Function. En Madigan, M.T., Martinko, J.M., Bender, K.S., Buckley, D.H., Stah, D.A. (Ed.). Brock biology of microorganisms. (pp. 25-76). Illinois, USA. ISBN 978-0-321-89739-81.

Mandrell, R.E. & Apicella, M.A. (1993). Lipo-oligosaccharides (LOS) of mucosal pathogens: molecular mimicry and host-modification of LOS. Immunobiology, 187(3-5),382-402. https://doi.org/10.1016/S0171-2985(11)80352-9

Maria-neto, S., de Almeida, K.C., Macedo, M.L.R. & Franco, O.L. (2015). Understanding bacterial resistance to antimicrobial peptides: From the surface to deep inside. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1848(11 Pt B),3078-3088. https://pubmed.ncbi.nlm.nih.gov/25724815/

Matsuura, M. (2013). Structural modifications of bacterial lipopolysaccharide that facilitate Gram-negative bacteria evasion of host innate immunity. Frontiers in Immunology, 4,1-10. https://doi.org/10.3389/fimmu.2013.00109

Mengin-Lecreulx, D. & Lemaitre, B. (2005). Structure and metabolism of peptidoglycan and molecular requirements allowing its detection by the Drosophila innate inmune system. Journal of Endotoxin Research, 11(2),109-111. https://doi/abs/10.1177/09680519050110020601

Murray, G.L, Attridge, S.R. & Morona, R. (2006). Altering the length of the lipopolysaccharide O antigen has an impact on the interaction of Salmonella enterica serovar Typhimurium with macrophages and complement. Journal Bacteriology, 188,2735–2739. doi: 10.1128/JB.188.7.2735-2739.2006.

Nikolic, P. & Mudgil P. (2023). The Cell Wall, Cell Membrane and Virulence Factors of Staphylococcus aureus and Their Role in Antibiotic Resistance. Microorganisms, 11(2),259. https://doi.org/10.3390/microorganisms11020259

Ormeño-Orrillo, E. (2005). Lipopolisacáridos de Rhizobiaceae: estructura y biosíntesis. Revista Latinoamericana de Microbiología, 47(3-4),165-175. https://www.medigraphic.com/pdfs/lamicro/mi-2005/mi05-3_4l.pdf

Palusiak, A. (2016). Classification of Proteus penneri lipopolysaccharides into core region serotypes. Medical Microbiology and Immunology, 205(6),615–624. https://doi.org/10.1007/s00430-016-0468-8

Patra, K.P., Choudhury, B., Matthias, M.M., Baga, S., Bandyopadhya, K. & Vinetz, J.M. (2015). Comparative analysis of lipopolysaccharides of pathogenic and intermediately pathogenic Leptospira species. BMC microbiology, 15,244. https://doi.org/10.1186/s12866-015-0581-7

Qian, J., Garrett, T.A. & Raetz, C.R.H. (2014). In Vitro Assembly of the Outer Core of the Lipopolysaccharide from Escherichia coli K-12 and Salmonella typhimurium. 2014. Biochemistry, 53(8),1250–1262. https://doi.org/10.1021/bi4015665

Raetz, C.R.H. & Whitfield, C. (2002). Lipopolysaccharide endotoxins. Annual Review of Biochemistry, 71,635-700. https://doi:10.1146/annurev.biochem.71.110601.135414

Rapicavoli, J.N., Blanco-Ulate, B., Muszyński, A., Figueroa-Balderas, R., Morales-Cruz, A., Azadi, P., Dobruchowska, J.M., Castro, C., Cantu, D. & Roper M.C. (2018). Lipopolysaccharide O-antigen delays plant innate immune recognition of Xylella fastidiosa. Nature Communications, 9(1),1-12. https://doi.org/10.1038/s41467-018-02861-5

Rietschel, E.T., Kirikae, T., Schade, F.U., Mamat, U., Schmidt, G., Loppnow, H., Ulmer, A.J., Zähringer, U., Seydel, U., Di Padova, F., Schreier, M.  Brade H. (1994). Bacterial endotoxin: molecular relationships of structure to activity and function. FASEB Journal, 8(2),217-25. doi: 10.1096/fasebj.8.2.8119492. PMID: 8119492.

Romaniuk, J.A.H. & Cegelski, L. (2015). Bacterial cell wall composition and the influence of antibiotics by cell-wall and whole-cell NMR. Philosophical Transactions of the Royal Society B: Biological Sciences, 370,1-14. https://doi/pdf/10.1098/rstb.2015.0024

Rothschild, L.J. & Mancinelli, R.L. (2001). Life in extreme environments. Nature, 409,1092-1101. https://www.nature.com/articles/35059215

Rodríguez-Angeles, G. (2002). Principales características y diagnóstico de los grupos patógenos de Escherichia coli. Salud pública de México, 44(5), 464-475.

Schaub, R.E. & Dillard, J.P. (2019). The Pathogenic Neisseria Use a Streamlined Set of Peptidoglycan Degradation Proteins for Peptidoglycan Remodeling, Recycling, and Toxic Fragment Release. Frontiers in Microbiology, 10,1-12. https://doi.org/10.3389/fmicb.2019.00073

Schneewind, O. & Missiakas, D. (2014). Lipoteichoic Acids, Phosphate-Containing Polymers in the Envelope of Gram-Positive Bacteria. Journal of Bacteriology, 196(6),1133–1142. https://jb.asm.org/content/jb/196/6/1133.full.pdf

Schleifer, K.H. & Kandler, O. (1972). Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriological Reviews, 36, 407-477. DOI: https://doi.org/10.1128/br.36.4.407-477.1972

Schneider, T. & Sahl, H.G. (2010). An oldie but a goodie-cell wall biosynthesis as antibiotic target pathway. International Journal of Medical Microbiology, 300(2-3),161–169. https://doi:10.1016/j.ijmm.2009.10.005

Schumann, P. (2011). 5 Peptidoglycan structure. Methods in microbiology, 38,101-129. https:// doi: 10.1016/B978-0-12-387730-7.00005-X

Shashkov, A.S., Kosmachevskaya, L.N., Streshinskaya, G.M., Evtushenko, L.I., Bueva, O.V., Denisenko, V.A., Naumova, I.B. & Stackebrandt, E. (2002). Cell wall anionic polymers of Streptomyces sp. MB-8, the causative agent of potato scab E. Carbohydrate Research, 337(21-23),2255-2261. https://doi.org/10.1016/S0008-6215(02)00188-X

Shiraishi, T., Yokota, S., Fukiya, S. & Yokota, A. (2016). Structural diversity and biological significance of lipoteichoic acid in Gram-positive bacteria: focusing on beneficial probiotic lactic acid bacteria. Bioscience of Microbiota, Food and Health, 35(4),147–161. https://doi.org/10.12938/bmfh.2016-006.

Singh, O.V. & Gabani, P. (2011). Extremophiles: radiation resistance microbial reserves and therapeutic implications. Journal of Applied Microbiology, 110(4),851-861. https://doi.org/10.1111/j.1365-2672.2011.04971.x

Sohlenkamp, C., Raetz, C.R.H. & Ingram, B.O. (2013). The calcium-stimulated lipid A 3-O deacylase from Rhizobium etli is not essential for plant nodulation. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, 1831(7), 1250-1259. https://doi.org/10.1016/j.bbalip.2013.04.002

Stimulants, N. L. (2000). Interactions of CD14 with components of gram-positive bacteria. CD14 in the Inflammatory Response, 74, 83-107.

Swoboda, J.G., Campbell, J., Meredith, T.C. & Walker, S. (2010). Wall teichoic acid function, biosynthesis, and inhibition. Chembiochem, 11(1),35–45. https://doi:10.1002/cbic.200900557

Sychantha, D., Brott, A.S., Jones, C.S. & Clarke, A.J. (2018). Mechanistic Pathways for Peptidoglycan O-Acetylation and De-O-Acetylation. Frontiers in microbiology, 9,1-17. https://doi.org/10.3389/fmicb.2018.02332

Troncoso, C., Pavez, M., Santos, A., Salazar, R. & Barrientos, L. (2017). Structural and Physiological Implications of Bacterial Cell in Antibiotic Resistance Mechanisms. International Journal of Morphology, 35(4),1214-1223. http://dx.doi.org/10.4067/S0717-95022017000401214

Turner, R.D., Mesnage, S., Hobbs, J.K. & Foster, S.J. (2018). Molecular imaging of glycan chains couples cell-wall polysaccharide architecture to bacterial cell morphology. Nature communications, 9,1-8. https://doi.org/10.1038/s41467-018-03551-y

Vinogradov, E., MacLean, L.L. & Perry, M.B. (2010). Structural determination of the O-antigenic polysaccharide of enteropathogenic Escherichia coli O103:H2. Canadian Journal of Microbiology, 56(5),366-372. https://doi.org/10.1139/W10-015

Vollmer, W. & Seligman, S.J. (2010). Architecture of peptidoglycan: more data and more models. Trends in Microbiology, 18(2),59-66. https://doi: 10.1016/j.tim.2009.12.004

Watanabe, S., Zenke, K. & Muroi, M. (2023). Lipoteichoic Acid Inhibits Lipopolysaccharide-Induced TLR4 Signaling by Forming an Inactive TLR4/MD-2 Complex Dimer. Journal of Immunology, 210(9),1386–1395. https://doi.org/10.4049/jimmunol.2200872

Weidenmaier, C. & Peschel, A. (2008). Teichoic acids and related cell-wall glycopolymers in Gram-positive physiology and host interactions. Nature Reviews Microbiology, 6(4),276-287. https://doi:10.1038/nrmicro1861

Yadav, K.A., Espaillat, A. & Cava, F. (2018). Bacterial Strategies to Preserve Cell Wall Integrity Against Environmental Threats. Frontiers in Microbiology, 9,2064. doi: 10.3389/fmicb.2018.02064

Publicado
2023-12-12
Cómo citar
Cuervo-Parra, J. A., Aparicio-Burgos, J. E., Pérez-España, V. H., Morales-Ovando, M. A., Peralta-Gil, M., & Romero-Cortes, T. (2023). Bioquímica de la pared celular de Gram positivas y Gram negativas. Pädi Boletín Científico De Ciencias Básicas E Ingenierías Del ICBI, 12(23). Recuperado a partir de https://repository.uaeh.edu.mx/revistas/index.php/icbi/article/view/11450
Tipo de manuscrito
Artículos de revisión