Modelo de pronóstico de cadena de suministro mediante redes neuronales

Palabras clave: pronóstico, demanda, cadena de suministro, redes neuronales, simulación

Resumen

Los inventarios en exceso afectan la cadena de suministro, haciéndola vulnerable y generando costos por obsolencia. Actualmente, se busca implementar herramientas que pronostiquen demandas de produccion y que impacten a los niveles de inventarios de la cadena de suministro para conocer el punto de reorden y que cumplan con los requerimientos del cliente. En este trabajo, se desarrolló un modelo de simulación de una cadena de suministro considerando cuatro eslabones (Proveedor, Producción, Distrubución y Detallista) con sus respectivos almacenes de productos. La informacion de niveles de inventario y tiempos de respuesta obtenidos en la simulación, fueron utilizados para el entrenamiento de 100 diferentes configuraciones de redes neuronales artificiales (RNAs), para buscar la que mejor pronóstico de niveles de inventario obtenga. La RNA que presentó mejor rendimiento (r2 = 0,99408, RMSE = 1,44217) contiene 12 neuronas en la capa de entrada, 70 neuronas en la primera capa oculta, 60 en la segunda capa oculta y 4 neuronas en la capa de salida.

Descargas

La descarga de datos todavía no está disponible.

Citas

Aamer, A., Eka Yani, L., y Alan Priyatna, I. (2020). Data analytics in the supply chain management: Review of machine learning applications in demand forecasting. Operations and Supply Chain Management: An International Journal, 14(1):1–13.

Aggarwal, C. (2018). Neural networks and deep learning. Springer, 10(978):3.

Barba, J., Quinde, C., Cevallos, L., y Rendon, C. (2019). Aplicación de redes neuronales artificiales para la toma de decisiones en el control de inventarios de una despensa ubicada en la ciudad de guayaquil. ResearchGate.

Bazan, R. M. (2023). Metodología 9s para mejorar la gestión de inventarios en los almacenes de una empresa metalmecánica, lima 2022.

Calatayud, A. (2017). The connected supply chain: enhancing risk management in a changing world.

Calatayud, A. y Katz, R. (2019). Cadena de suministro 4.0: Mejores prácticas internacionales y hoja de ruta para América Latina, volumen 744. Inter-American Development Bank.

Casalet, M. (2018). La digitalización industrial: un camino hacia la gobernanza colaborativa. estudios de casos.

Chawla, A., Singh, A., Lamba, A., Gangwani, N., y Soni, U. (2019). Demand forecasting using artificial neural networksˆaa case study of american retail corporation. En Applications of Artificial Intelligence Techniques in Engineering: SIGMA 2018, Volume 2, pp. 79–89. Springer.

Chopra, S. y Meindl, P. (2013). Supply chain management. Strategy, planning, and operation. New York, NY, USA.

Christopher, M. (2016). Logistics & supply chain management. Pearson Uk.

Cruz, L. J. L. J. (2023). Gestión de la cadena de suministros y la ventaja competitiva en una empresa comercial del rubro minería, callao, año 2022.

de Paula Vidal, G. H., Caiado, R. G. G., Scavarda, L. F., Ivson, P., y Garza-Reyes, J. A. (2022). Decision support framework for inventory management combining fuzzy multicriteria methods, genetic algorithm, and artificial neural network. Computers & Industrial Engineering, 174:108777.

Duchi Ortega, B. R. (2022). Propuesta de un modelo matemático aplicado al pronostico de producción utilizando redes neuronales artificiales aplicado a una fabrica de galleta de sal de 100 x 67 gr. Tesis de master.

Feizabadi, J. (2022). Machine learning demand forecasting and supply chain performance. International Journal of Logistics Research and Applications, 25(2):119–142.

Flores, J. A., Manrique, M. A., Taco, A. M., y Teves, J. (2019). Gestión de cadena de suministro: una mirada desde la perspectiva teórica. Revista Venezolana de Gerencia, 24(88):1136–1146.

García, P. T. (2022). Toma de decisiones en la cadena de suministro.

Gómez, R. A., Zuluaga, A., Ceballos, N. P., y Palacio, D. (2019). Gestión de la cadena de suministros y productividad en la literatura científica. I+ D Revista de Investigaciones, 14(2):40–51.

Guamán, S., Mullo, H., y Marcatoma, J. (2023). Comparación entre modelos de regresión lineal múltiple vs redes neuronales artificiales supervisadas en la predicción de calificaciones ser bachiller 2018-2019 del ecuador. Revista

Iberoamericana de la Educación, 7(2).

Kosasih, E. y Brintrup, A. (2022). A machine learning approach for predicting hidden links in supply chain with graph neural networks. International Journal of Production Research, 60(17):5380–5393.

Medina, R. y Oscar, E. (2021). Pronóstico de demanda altamente variable e intermitente usando un modelo básico de red neuronal artificial para disminuir el riesgo de rotura de stock de una compañía que abastece productos en sudamérica.

Miranda, A. L. A. (2023). Implementación de una red neuronal para la predicción de la producción de los operarios de la empresa textil litex.

Molina, T. (2023). Economía circular y producción lean en la gestión de las cadenas de suministro: Un modelo de simulación. Catedracogersa. Com.

Molinillo, J. S. (2020). Distribución comercial aplicada. Esic.

Morales, C. A., Ramírez, R. E., y Rodríguez, A. G. (2019). Pronóstico de ventas de las empresas del sector alimentos: una aplicación de redes neuronales. Semestre Económico, 22(52):161–177.

Patsavellas, J., Kaur, R., y Salonitis, K. (2021). Supply chain control towers: Technology push or market pullˆaan assessment tool. IET Collaborative Intelligent Manufacturing, 3(3):290–302.

Reategui, R. y Hirvyn, A. (2023). Modelo una red neuronal artificial para la mejora de la gestión de inventarios en empresas comerciales del distrito de tarapoto.

Rodríguez, J., González, J., Moreno, C., Bautista, C., Júnez, H., Castillo, L., y Dávila, S. (2023). Estimación de lluvias mensuales promedio con regresión lineal múltiple y redes neuronales artificiales en una cuenca semiárida. Research in Computing Science.

Silva, N., Ferreira, L. M. D., Silva, C., Magalhaes, V., y Neto, P. (2017). Improving supply chain visibility with artificial neural networks. Procedia Manufacturing, 11:2083–2090.

Steven, N. (2007). Análisis de la producción y las operaciones. Mc Graw Hill, 5 edición.

Suárez, R. y Ladino, I. (2023). Redes neuronales aplicadas al control estadístico de procesos con cartas de control ewma. Tecnura, 27(75):4–4.

Walpole, R., Myers, R., y Myers, S. (2012). Probabilidad y estadística para ingeniería y ciencia. Pearson, 9 edición.

Publicado
2023-11-20
Cómo citar
Palafox-Palafox, D., Medina-Marín, J., Seck-Tuoh-Mora, J. C., Serna-Díaz, M. G., & Hernández-Romero, N. (2023). Modelo de pronóstico de cadena de suministro mediante redes neuronales. Pädi Boletín Científico De Ciencias Básicas E Ingenierías Del ICBI, 11(Especial3), 103-111. https://doi.org/10.29057/icbi.v11iEspecial3.11482
Tipo de manuscrito
Artículos de investigación

Artículos más leídos del mismo autor/a

1 2 > >>