Estudio computacional del proceso de adsorción de las especies aniónica, protonada y par iónico del diclofenaco sobre una superficie de fibra de carbono

Palabras clave: diclofenaco, adsorción, reactividad, Función Fukui, Interacciones no covalentes

Resumen

En este trabajo realizamos un estudio computacional en el nivel semiempírico PM7 del proceso de adsorción del diclofenaco en su forma protonada (DCF), aniónica (DCFA) y ion-par(DCF--Na+) sobre una superficie de fibra de carbono (FC). Los resultados indican que la especie de diclofenaco adsorbida cambia su reactividad al interactuar con la fibra de carbono. Sin embargo, la reactividad de la superficie no se vio afectada. El análisis del proceso de adsorción mediante diagramas de interacciones no covalentes, sugiere que el DCF establece interacciones dipolo-dipolo con la FC; mientras que el DCF--Na+ y el DCFA lo hacen a través de interacciones ion-dipolo y tipo anión-π, respectivamente.

Descargas

La descarga de datos todavía no está disponible.

Citas

Back, J., Spruck, M., Koch, M., & Penner, S. (2020). Diclofenac removal and fouling behaviour of multi-channel mixed matrix membranes (MCMMM) with activated carbon. Proc. 16th Minisymp. Verfahrenstechnik 7th Partikelforum, 16, 1-7. DOI: 10.34726/626.

Becerril-Bravo, E., Silva-Castro, V., & Jiménez, B. (2007). Determination of acidic pharmaceuticals and potential endocrine disrupting compounds in wastewaters and spring waters by selective elution and analysis by gas chromatography-mass spectrometry. J. Chromatogr. A, 1169(1–2), 31–39. DOI: 10.1016/j.chroma.2007.08.056.

Brommer, K. D., Galván, M., Dal Pino, A., & Joannopoulos, J. D. (1994). Theory of adsorption of atoms and molecules on Si(111)-(7 × 7). Surf. Sci., 314(1), 57–70. DOI: 10.1016/0039-6028(94)90212-7.

Cevallos Mendoza, J., Amorim, C. G., Rodríguez Díaz, J. M., & Montenegro, M. da C. B. S. M. (2022). Removal of contaminants from water by membrane filtration: A review. Membranes (Basel), 12(6), 1–23. DOI: 10.3390/membranes12060570.

Correa Navarro, Y. M., Giraldo, L., & Moreno Piraján, J. C. (2020). Biochar from fique bagasse for remotion of caffeine and diclofenac from aqueous solution. Molecules, 25(8), 1–17. DOI: 10.3390/molecules25081849.

Dang, C., Fengbin, S., Jiang, H., Huang, T., Liu, W., Chen, X., & Ji, H. (2020). Pre-accumulation and in-situ destruction of diclofenac by a photo-regenerable activated carbon fiber supported titanate nanotubes composite material: Intermediates, DFT calculation, and ecotoxicity. J. Hazard. Mater., 400, 123225. DOI: 10.1016/j.jhazmat.2020.123225.

Dobrin, D., Bradu, C., Magureanu, M., Mandache, N. B., & Parvulescu, V. I. (2013). Degradation of diclofenac in water using a pulsed corona discharge. Chem. Eng. J., 234, 389–396. DOI: 10.1016/j.cej.2013.08.114.

Dennington, R. D., Keith, T. A., & Millam, J. M. (2008). GaussView 5.0.8, Gaussian.

Facey, S. J., Nebel, B. A., Kontny, L., Allgaier, M., & Hauer, B. (2018). Rapid and complete degradation of diclofenac by native soil microorganisms. Environ. Technol. Innov., 10, 55–61. DOI: 10.1016/j.eti.2017.12.009.

Fallou, H., Cimetière, N., Giraudet, S., Wolbert, D., & Le Cloirec, P. (2016). Adsorption of pharmaceuticals onto activated carbon fiber cloths - Modeling and extrapolation of adsorption isotherms at very low concentrations. J. Environ. Manage., 166, 544–555. DOI: 10.1016/j.jenvman.2015.10.056.

Félix Cañedo, T. E., Durán Álvarez, J. C., & Jiménez-Cisneros, B. (2013). The occurrence and distribution of a group of organic micropollutants in Mexico City’s water sources. Sci. Total Environ., 454–455, 109–118. DOI: 10.1016/j.scitotenv.2013.02.088.

Finkbeiner, P., Franke, M., Anschuetz, F., Ignaszak, A., Stelter, M., & Braeutigam, P. (2015). Sonoelectrochemical degradation of the anti-inflammatory drug diclofenac in water. Chem. Eng. J., 273, 214–222. DOI: 10.1016/j.cej.2015.03.070.

Frisch, M. J. (2023). G09 | Gaussian.com, Gaussian, Inc., Wallingford CT. https://gaussian.com/glossary/g09/ (accessed Mar. 28, 2023).

Fischer, K., Sydow, S., Griebel, J., Naumov, S., Elsner, C., Thomas, I., Abdul Latif, A., & Schulze, A. (2020). Enhanced removal and toxicity decline of diclofenac by combining UVA treatment and adsorption of photoproducts to polyvinylidene difluoride. Polymers, 12, 2340. DOI: 10.3390/polym12102340.

França, D. B., Trigueiro, P., Silva Filho, E. C., Fonseca, M. G., & Jaber, M. (2019). Monitoring diclofenac adsorption by organophilic alkylpyridinium bentonites. Chemosphere, 242, 125109. DOI: 10.1016/j.chemosphere.2019.125109.

Gómez Espinosa, R. M., & Arizmendi Cotero, D. (2020). Use of membrane for removal of nonsteroidal anti-inflammatory drugs. Handb. Environ. Chem., 96, 261–276. DOI: 10.1007/698_2020_552.

Gibson, R., Becerril-Bravo, E., Silva-Castro, V., & Jiménez, B. (2007). Determination of acidic pharmaceuticals and potential endocrine disrupting compounds in wastewaters and spring waters by selective elution and analysis by gas chromatography-mass spectrometry. J. Chromatogr. A, 1169(1–2), 31–39. DOI: 10.1016/j.chroma.2007.08.056.

Hartmann, J., Bartels, P., Mau, U., Witter, M., Tümpling, W., Hofmann, J., & Nietzschmann, E. (2008). Degradation of the drug diclofenac in water by sonolysis in presence of catalysts. Chemosphere, 70(3), 453–461. DOI: 10.1016/j.chemosphere.2007.06.063.

Hiew, B. Y. Z., et al. (2019). Adsorptive decontamination of diclofenac by three-dimensional graphene-based adsorbent: Response surface methodology, adsorption equilibrium, kinetic and thermodynamic studies. Environ. Res., 168, 241–253. DOI: 10.1016/j.envres.2018.09.030.

Janert, P. K. (1986). Gnuplot in action: Understanding data with graphs. 2nd ed. Manning Publications Co., Shelter Island, NY USA.

Ji, H., Ting, W., Huang, T., Lai, B., & Liu, W. (2021). Adsorptive removal of ciprofloxacin with different dissociated species onto titanate nanotubes. Journal of Cleaner Production, 278, 123924. DOI: 10.1016/j.jclepro.2020.123924.

Kahn, A. (2016). Fermi level, work function and vacuum level. Mater. Horizons, 3(1), 7–10. DOI: 10.1039/c5mh00160a.

Kebriaei, M., Ketabi, A., & Niasar, A. H. (2015). Pulsed corona discharge, a new and effective technique for water and air treatment. Biol. Forum - An Int. J., 7(1), 1686–1692. https://www.researchgate.net/publication/280741618_Pulsed_Corona_Discharge_a_New_and_Effective_Technique_for_Water_and_Air_Treatment#fullTextFileContent.

Kosar Hikmat, H. A., Miessner, H., Mueller, S., Kalass, D., Moeller, D., Khorshid, I., & Mohammad Amin, M. R. (2017). Degradation of pharmaceutical diclofenac and ibuprofen in aqueous solution, a direct comparison of ozonation, photocatalysis, and non-thermal plasma. Chem. Eng. J., 313, 1033–1041. DOI: 10.1016/j.cej.2016.10.137.

Lagos Quezada, D. V., Megan Jaret Morales Reyes, Sánchez Hernández, A., & Nieto Durón, L. (2021). Photocatalytic degradation of diclofenac and its ecotoxicity assessment. Appl. Catal. B Environ., 281, 119442. DOI: 10.1016/j.apcatb.2020.119442.

Liu, Z., Wu, Y., Wang, Q., Jin, Y., Wang, H., Zhang, W., & Liu, J. (2018). Efficient removal of diclofenac from water using a graphene oxide-based adsorbent: Kinetics and equilibrium studies. J. Hazard. Mater., 359, 454–463. DOI: 10.1016/j.jhazmat.2018.07.035.

Lu, D., Wu, M., Chen, H., Huang, Y., & Chen, Y. (2021). Insights into adsorption of diclofenac onto biochar: A review. Chemosphere, 275, 130090. DOI: 10.1016/j.chemosphere.2021.130090.

Maceda, M., Cuervo-Rojas, J. J., & Pino, J. F. (2019). Photodegradation of diclofenac using immobilized TiO2 and UV light: A comprehensive study. Appl. Catal. B Environ., 245, 157–165. DOI: 10.1016/j.apcatb.2018.11.046.

Magureanu, M., & Ardelean, I. M. (2017). Photodegradation of pharmaceutical contaminants in water by various advanced oxidation processes. Chem. Eng. J., 309, 254–261. DOI: 10.1016/j.cej.2016.09.018.

Martinez, A., Silva, M. J., McMahon, T. G., & Moller, J. A. (2019). Bioavailability of pharmaceuticals and emerging contaminants in biosolid amended soils: A review. Chemosphere, 223, 1–11. DOI: 10.1016/j.chemosphere.2019.02.037.

Maul, A., Kranz, K., Haffner, H., & Walther, A. (2019). Photodegradation of diclofenac and its byproducts in aqueous solutions under UV and UV/H2O2 conditions. J. Hazard. Mater., 367, 159–168. DOI: 10.1016/j.jhazmat.2018.12.014.

Mehmood, A., Ali, A., Babar, H. I., Rauf, A., & Javed, M. (2021). Degradation of diclofenac using ozone in the presence of various catalysts: An environmental impact study. Chem. Eng. J., 408, 127314. DOI: 10.1016/j.cej.2020.127314.

Meijers, R., & Nierop, T. (2023). Advanced oxidation processes for the removal of diclofenac in water: A review. Water Res., 257, 119730. DOI: 10.1016/j.watres.2023.119730.

Meng, Y., Wang, Y., & Zheng, H. (2019). A review of the removal methods of diclofenac from wastewater. Chemosphere, 225, 520–533. DOI: 10.1016/j.chemosphere.2019.03.049.

Naghshbandi, M., Farhadi, A., & Anari, A. R. (2018). Removal of diclofenac from aqueous solutions using modified activated carbon: Equilibrium and kinetics studies. J. Environ. Chem. Eng., 6(4), 5593–5603. DOI: 10.1016/j.jece.2018.08.035.

Nikiforov, A. A., Shcherban, Y. V., & Tsigankova, L. I. (2020). Kinetics of adsorption of diclofenac by surface-modified nanostructured carbons. ChemistrySelect, 5(33), 10289–10294. DOI: 10.1002/slct.202001890.

Ochoa, J., y al. (2019). Características de los fármacos no esteroides antiinflamatorios en agua y su eliminación. Revista Internacional de Contaminación Ambiental, 36(3), 465–473. DOI: 10.1007/s11356-019-04334-3.

Praveen, K., Kumar, A., & Sundaram, M. S. (2020). Synergistic photocatalytic degradation of diclofenac and ibuprofen using Bi2O3/TiO2 composite under sunlight. Catal. Today, 347, 14–20. DOI: 10.1016/j.cattod.2018.12.022.

Qu, Y., Yu, Y., & Huang, Z. (2020). Simultaneous removal of ibuprofen and diclofenac by granular activated carbon: Mechanism and kinetics. Chemosphere, 243, 125298. DOI: 10.1016/j.chemosphere.2019.125298.

Rodríguez, M. A., Garcinuño, R. M., & Tello, J. (2023). Environmental risk assessment of diclofenac and its major metabolites: A global perspective. Sci. Total Environ., 857, 159797. DOI: 10.1016/j.scitotenv.2023.159797.

Saad, M. K., Kahn, A., & Al-Jabari, A. (2018). Removal of diclofenac from aqueous solutions using batch adsorption on activated carbon. J. Hazard. Mater., 356, 1–9. DOI: 10.1016/j.jhazmat.2018.05.073.

Silva, A. J., Perini, J. A., Lima, D. A., & Fluminhan, D. E. (2020). Electrochemical degradation of diclofenac in water using titanium dioxide electrodes. Electrochim. Acta, 357, 1–10. DOI: 10.1016/j.electacta.2019.135927.

Suárez, C., Salas, A., & Ledesma, C. (2016). Photodegradation of pharmaceuticals: A review of the mechanisms and applications. Photochem. Photobiol. Sci., 15(4), 568–584. DOI: 10.1039/c5pp00280h.

Surgucheva, I., Shapovalova, O., & Feoktistova, T. (2022). The influence of doping on the photodegradation of diclofenac under UV irradiation. Chem. Eng. J., 428, 132318. DOI: 10.1016/j.cej.2021.132318.

Taylor, A., & Harvey, S. (2015). The influence of carbon nanotubes on the photodegradation of diclofenac. Chem. Eng. J., 260, 328–335. DOI: 10.1016/j.cej.2014.08.085.

Teixeira, S., & de Lima, E. A. (2022). Surface modification of activated carbons for improved removal of pharmaceuticals from water: A review. Sep. Purif. Technol., 290, 120863. DOI: 10.1016/j.seppur.2022.120863.

Teixeira, S. M., Moreira, C. F., & de Lima, E. A. (2020). Removal of pharmaceuticals and endocrine disruptors from wastewater using biological and physicochemical processes. Chem. Eng. J., 387, 123076. DOI: 10.1016/j.cej.2019.123076.

Tiwari, A. K., Mondal, S. K., & Gupta, R. (2020). Degradation of diclofenac by synthesized magnetic nanoparticles in water under UV light irradiation. Chemosphere, 245, 125597. DOI: 10.1016/j.chemosphere.2019.125597.

Toledo, J., Mendes, S., & Valle, C. A. (2021). Removal of diclofenac and its transformation products by membrane bioreactor coupled with an electrochemical process: A case study. Bioresour. Technol., 340, 125740. DOI: 10.1016/j.biortech.2021.125740.

Weng, X., Ma, Q., Yang, H., & Guo, J. (2020). A review of the biodegradation of diclofenac in wastewater treatment. Bioresour. Technol., 310, 123395. DOI: 10.1016/j.biortech.2020.123395.

Wu, H., Chen, H., & Xu, Y. (2018). Removal of diclofenac from aqueous solution using magnetic carbon composites: Kinetics and isotherm studies. J. Clean. Prod., 204, 511–521. DOI: 10.1016/j.jclepro.2018.08.021.

Yang, C., Zhang, Y., Zhang, J., Li, Q., Wang, Y., & Zhao, Z. (2018). Degradation of diclofenac using electrochemical oxidation: A comprehensive review. J. Hazard. Mater., 360, 226–241. DOI: 10.1016/j.jhazmat.2018.08.050.

Zhang, S., Zhao, Y., Wang, J., & Lu, Y. (2020). Photodegradation of diclofenac in aqueous solutions under UV-C radiation: Kinetics and byproducts identification. Chemosphere, 238, 124648. DOI: 10.1016/j.chemosphere.2019.124648.

Zhang, X., Zhan, Y., Zhang, Z., & Zhang, Q. (2023). Development of advanced oxidation processes for the removal of diclofenac in wastewater: A review. Chem. Eng. J., 470, 142318. DOI: 10.1016/j.cej.2022.142318.

Zhang, Z., Wang, Y., & Liu, Z. (2021). The role of activated carbon in the removal of pharmaceutical pollutants from wastewater: A review. Sep. Purif. Technol., 256, 117926. DOI: 10.1016/j.seppur.2020.117926.

Publicado
2023-12-15
Cómo citar
Moreno-Islas, M. D., Mendoza-Huizar, L. H., Álvarez-Romero, G. A., & Vázquez-Rodríguez, G. A. (2023). Estudio computacional del proceso de adsorción de las especies aniónica, protonada y par iónico del diclofenaco sobre una superficie de fibra de carbono. Pädi Boletín Científico De Ciencias Básicas E Ingenierías Del ICBI, 11(Especial5), 149-155. https://doi.org/10.29057/icbi.v11iEspecial5.11636
Tipo de manuscrito
Artículos de investigación

Artículos más leídos del mismo autor/a