Estudio computacional del proceso de adsorción de las especies aniónica, protonada y par iónico del diclofenaco sobre una superficie de fibra de carbono

Palabras clave: diclofenaco, adsorción, reactividad, Función Fukui, Interacciones no covalentes

Resumen

En este trabajo realizamos un estudio computacional en el nivel semiempírico PM7 del proceso de adsorción del diclofenaco en su forma protonada (DCF), aniónica (DCFA) y ion-par(DCF--Na+) sobre una superficie de fibra de carbono (FC). Los resultados indican que la especie de diclofenaco adsorbida cambia su reactividad al interactuar con la fibra de carbono. Sin embargo, la reactividad de la superficie no se vio afectada. El análisis del proceso de adsorción mediante diagramas de interacciones no covalentes, sugiere que el DCF establece interacciones dipolo-dipolo con la FC; mientras que el DCF--Na+ y el DCFA lo hacen a través de interacciones ion-dipolo y tipo anión-π, respectivamente.

Descargas

La descarga de datos todavía no está disponible.

Citas

Back, J., Spruck, M., Koch, M., & Penner, S. (2020). Diclofenac Removal and Fouling Behaviour of Multi-Channel Mixed Matrix Membranes (MCMMM) with Activated Carbon. Proc. 16th Minisymp. Verfahrenstechnik 7th Partikelforum, (16), 1-7.

DOI: 10.34726/626

Becerril-Bravo E., Silva-Castro V., and Jiménez B., (2007). Determination of acidic pharmaceuticals and potential endocrine disrupting compounds in wastewaters and spring waters by selective elution and analysis by gas chromatography-mass spectrometry, J. Chromatogr. A, (1169)1–2, 31–39. DOI: 10.1016/j.chroma.2007.08.056.

Brommer K. D., Galván M., Dal Pino A., and Joannopoulos J. D., (1994). Theory of adsorption of atoms and molecules on Si(111)-(7 × 7). Surf. Sci., (314)1, 57–70.

DOI: 10.1016/0039-6028(94)90212-7

Cevallos Mendoza J., Amorim C. G., Rodríguez Díaz J. M., and Montenegro M. da C. B. S. M., (2022). Removal of Contaminants from Water by Membrane Filtration: A Review. Membranes (Basel)., (12) 6,1–23.

DOI: 10.3390/membranes12060570.

Correa Navarro Y. M., Giraldo L., and Moreno Piraján J. C., (2020). Biochar from fique bagasse for remotion of caffeine and diclofenac from aqueous solution, Molecules, (25) 8, 1–17.

DOI: 10.3390/molecules25081849.

Dang C., S. Fengbin, Jiang H., Huang T., Liu W., Chen X., Ji H., (2020). Pre-accumulation and in-situ destruction of diclofenac by a photo-regenerable activated carbon fiber supported titanate nanotubes composite material: Intermediates, DFT calculation, and ecotoxicity. J. Hazard. Mater., (400) June, 123225.

DOI: 10.1016/j.jhazmat.2020.123225.

Dobrin D., Bradu C., Magureanu M., Mandache N. B., and Parvulescu V. I., (2013). Degradation of diclofenac in water using a pulsed corona discharge. Chem. Eng. J., (234), 389–396.

DOI: 10.1016/j.cej.2013.08.114.

Dennington, R.D.; Keith, T.A. and Millam, J.M. (2008) GaussView 5.0.8, Gaussian.

Facey S. J., Nebel B. A., Kontny L., Allgaier M., and Hauer B., (2018). Rapid and complete degradation of diclofenac by native soil microorganisms, Environ. Technol. Innov., (10), 55–61.

DOI: 10.1016/j.eti.2017.12.009.

Fallou H., Cimetière N., Giraudet S., Wolbert D., and Le Cloirec P., (2016). Adsorption of pharmaceuticals onto activated carbon fiber cloths - Modeling and extrapolation of adsorption isotherms at very low concentrations,” J. Environ. Manage., (166), 544–555.

DOI: 10.1016/j.jenvman.2015.10.056.

Félix Cañedo T. E., Durán Álvarez J. C., Jiménez-Cisneros B., (2013). The occurrence and distribution of a group of organic micropollutants in Mexico City’s water sources,” Sci. Total Environ., (454–455), 109–118. DOI: 10.1016/j.scitotenv.2013.02.088. (Félix et al., 2013)

Finkbeiner P., Franke M., Anschuetz F., Ignaszak A., Stelter M., and Braeutigam P., (2015). Sonoelectrochemical degradation of the anti-inflammatory drug diclofenac in water, Chem. Eng. J., (273) 214–222.

DOI: 10.1016/j.cej.2015.03.070

Frisch M. J. (2023). G09 | Gaussian.com, Gaussian, Inc., Wallingford CT.

https://gaussian.com/glossary/g09/ (accessed Mar. 28, 2023)

Fischer, K., Sydow, S., Griebel, J., Naumov, S., Elsner, C., Thomas, I., Abdul Latif, A., Schulze, A., (2020). Enhanced Removal and Toxicity Decline of Diclofenac by Combining UVA Treatment and Adsorption of Photoproducts to Polyvinylidene Difluoride. Polymers, (12), 2340.

DOI: 10.3390/polym12102340.

França D. B., Trigueiro P., Silva Filho E. C., Fonseca M. G., and Jaber M., (2019). Monitoring diclofenac adsorption by organophilic alkylpyridinium bentonites, Chemosphere, (242)125109

DOI: 10.1016/j.chemosphere.2019.125109.

Gómez Espinosa R. M. and Arizmendi Cotero D., (2020). Use of Membrane for Removal of Nonsteroidal Anti-inflammatory Drugs. Handb. Environ. Chem., (96), 261–276.

DOI: 10.1007/698_2020_552.

Gibson R., Becerril-Bravo E., Silva-Castro V., and Jiménez B., (2007). Determination of acidic pharmaceuticals and potential endocrine disrupting compounds in wastewaters and spring waters by selective elution and analysis by gas chromatography-mass spectrometry, J. Chromatogr. A, (1169)1–2, 31–39.

DOI: 10.1016/j.chroma.2007.08.056.

Hartmann J., Bartels P. , Mau U., Witter M. , Tümpling W. , Hofmann J. , Nietzschmann E. (2008). Degradation of the drug diclofenac in water by sonolysis in presence of catalysts, Chemosphere, (70) 3, 453–461.

DOI: 10.1016/j.chemosphere.2007.06.063.

Hiew B. Y. Z. et al., (2019). Adsorptive decontamination of diclofenac by three-dimensional graphene-based adsorbent: Response surface methodology, adsorption equilibrium, kinetic and thermodynamic studies. Environ. Res., (168) 241–253.

DOI: 10.1016/j.envres.2018.09.030.

Janert P. K., (1986). Gnuplot in Action: Understanding Data with Graphs. 2nd ed., Manning Publications Co., Shelter Island, NY USA.

Ji H., W. Ting, Huang T., Lai B., Liu W., (2021). Adsorptive removal of ciprofloxacin with different dissociated species onto titanate nanotubes, Journal of Cleaner Production, (278),123924.

DOI: 10.1016/j.jclepro.2020.123924.

Kahn A., (2016). Fermi level, work function and vacuum level. Mater. Horizons, (3)1, 7–10.

DOI: 10.1039/c5mh00160a.

Kebriaei M., Ketabi A., and Niasar A. H., (2015). Pulsed corona discharge, a new and effective technique for water and air treatment. Biol. Forum - An Int. J., (7) 1, 1686–1692. https://www.researchgate.net/publication/280741618_Pulsed_Corona_Discharge_a_New_and_Effective_Technique_for_Water_and_Air_Treatment#fullTextFileContent.

Kosar Hikmat H. A., Miessner H., Mueller S. , Kalass D., Moeller D., Khorshid I., M. R. Mohammad Amin (2017). Degradation of pharmaceutical diclofenac and ibuprofen in aqueous solution, a direct comparison of ozonation, photocatalysis, and non-thermal plasma, Chem. Eng. J., vol. 313, 1033–1041, 2017.

DOI: 10.1016/j.cej.2016.10.137.

Lagos Quezada D. V. Megan Jaret Morales Reyes, Sánchez Hernández A., Nieto Durón C.A., (2019). Reacciones sistémicas causadas por la toxicidad del diclofenaco. Rev. Científica la Esc. Univ. las Ciencias la Salud, (5) 41–49.

DOI: 10.5377/rceucs.v5i1.7209

Laplaza R., P. Francesca, Boto R. A., Quan Ch., Carbone A., Piquema J. P, Maday Y, Contreras García J. (2021) NCIPLOT and the analysis of noncovalent interactions using the reduced density gradient. Wiley Interdiscip. Rev. Comput. Mol. Sci., (11) 2, 1–18.

DOI: 10.1002/wcms.1497

Liu Y., Li J., Zeng J., Yu X., Sun X., and Zhou Z., (2013). Complete oxidative degradation of diclofenac via coupling free radicals and oxygenases of a micro / nanostructured biogenic Mn oxide composite from engineered Pseudomonas sp. MB04R-2, J. Hazard. Mater., (456) January,1–13.

DOI: 10.1016/j.jhazmat.2023.131657

Lu T., Chen F., (2012). Multiwfn: A multifunctional wavefunction analyser. J. Comput. Chem., (33)5, 580–592.

DOI: 10.1002/JCC.22885

Mendoza Huizar L. H., Moreno Islas M. D., Álvarez Romero G. A., (2023). Estudio del comportamiento electroquímico del diclofenaco en su forma aniónica y ion-par en un medio acuoso sobre un ultramicroelectrodo de fibra de carbono. (11) 21,136–141.

DOI: 10.29057/icbi.v11i21.10970.

Martínez Ruiz R. de J., (2014). Efectividad de la analgesia en posoperadas de cesárea con tramadol peridural asociado a: ketorolaco IV (cox-1) vs diclofenaco IV (cox-2) vs paracetamol IV (cox-3). (2014). Tesis, Facultad de medicina, Universidad Autónoma del Estado de México. http://ri.uaemex.mx/handle/123456789/14614

Nguyen L. T., De Proft F., Amat M. C., Van Lier G., Fowler P. W., Geerlings P., (2003). Local softness versus local density of states as reactivity index. J. Phys. Chem. A, (107) 35, 6837–6842.

DOI: 10.1021/jp0343887.

Nisar J. et al., “Gamma - Irradiation induced degradation of diclofenac in aqueous solution: Kinetics, role of reactive species and influence of natural water parameters. (2016) J. Environ. Chem. Eng.,(4)2, 2573–2584. DOI: 10.1016/j.jece.2016.04.034.

O'Boyle N., (2023). GaussSum: analyse ADF, GAMESS, GAMESS-UK, Gaussian, Jaguar and PC GAMESS output files.

https://gausssum.sourceforge.net/ (accessed Sep. 15, 2023)

Oral O. and Kantar C., (2019). Diclofenac removal by pyrite-Fenton process: Performance in batch and fixed-bed continuous flow systems,” Sci. Total Environ., (664), 817–823.

DOI: 10.1016/j.scitotenv.2019.02.084.

Pérez S. and Barceló D.,(2008). First evidence for occurrence of hydroxylated human metabolites of diclofenac and aceclofenac in wastewater using QqLIT-MS and QqTOF-MS. Anal. Chem., (80) 21,8135–8145.

DOI: 10.1021/ac801167w.

Praveen K., Ramraj P.A., Ramesh B., (2015). Validation of PM6 & PM7 semiempirical methods on polarizability calculations, AIP Conf. Proc., (19)10, 3136–3143.

DOI: 10.1063/1.4917991.

Rehman F., Ahmad W., and Sayed M., (2021). Mechanistic investigations on the removal of diclofenac sodium by UV/S2O82−/Fe2+ , UV/HSO5−/Fe2+ and UV/H2O2/Fe2+-based advanced oxidation processes. Environ. Technol. (United Kingdom), vol. 42, no. 25, pp. 3995–4005, 2021.

DOI: 10.1080/09593330.2020.1770869.

Salvestrini S., Fenti A., Chianese S., Iovino P., and Musmarra D., (2020). Diclofenac sorption from synthetic water: Kinetic and thermodynamic analysis. J. Environ. Chem. Eng., (8) 5, 104105.

DOI: 10.1016/j.jece.2020.104105.

Saravanan M., Karthika S., Malarvizhi A., and Ramesh M., (2011). Ecotoxicological impacts of clofibric acid and diclofenac in common carp (Cyprinus carpio) fingerlings: Hematological, biochemical, ionoregulatory and enzymological responses, J. Hazard. Mater., (19), 188–194.

DOI: 10.1016/j.jhazmat.2011.08.029.

Sellaoui L., Mechi N., Lima É. C., Dotto G. L., and Ben Lamine A., (2017). Adsorption of diclofenac and nimesulide on activated carbon: Statistical physics modeling and effect of adsorbate size, J. Phys. Chem. Solids, (109),117–123.

DOI: 10.1016/j.jpcs.2017.05.019.

Sklari S. D., Plakas K. V., Petsi P. N., Zaspalis V. T., and Karabelas A. J., (2015). Toward the development of a novel electro-Fenton system for eliminating toxic organic substances from water. Part 2. Preparation, characterization, and evaluation of iron-impregnated carbon felts as cathodic electrodes. Ind. Eng. Chem. Res., (54) 7, 2059–2073.

DOI: 10.1021/ie5048779.

Stewart J. J. P., (2007). Optimization of parameters for semiempirical methods V: Modification of NDDO approximations and application to 70 elements,” J. Mol. Model., (13)12,1173–1213.

DOI: 10.1007/S00894-007-0233-4.

Stewart J. J. P., (2013). Optimization of parameters for semiempirical methods VI: More modifications to the NDDO approximations and re-optimization of parameters,” J. Mol. Model., (19)1,1–32.

DOI: 10.1007/s00894-012-1667-x.

Tajkhorshid E., (2023) Theoretical and Computational Biophysics Group, What is VMD?.

https://www.ks.uiuc.edu/Research/vmd/allversions/what_is_vmd.html.

Tominaga F. K., Dos Santos Batista A. P., Silva Costa Teixeira A. C., and Borrely S. I., (2018). Degradation of diclofenac by electron beam irradiaton: Toxicitiy removal, by-products identification and effect of another pharmaceutical compound, J. Environ. Chem. Eng., (6) 4, 4605–4611.

DOI: 10.1016/j.jece.2018.06.065.

Yang W. and Parr R. G., (1985). Hardness, softness, and the fukui function in the electronic theory of metals and catalysis. Proc. Natl. Acad. Sci. U. S. A., (82) 20, 6723–6726.

DOI: 10.1073/pnas.82.20.6723

Younes H. A., Taha M., Mahmoud R., Mahmoud H. M., and Abdelhameed R. M., (2022). High adsorption of sodium diclofenac on post-synthetic modified zirconium-based metal-organic frameworks: Experimental and theoretical studies, J. Colloid Interface Sci., (607), 334–346.

DOI: 10.1016/j.jcis.2021.08.158.

Yu X., Cabooter D., and Dewil R. (2019). Efficiency and mechanism of diclofenac degradation by sulfite/UV advanced reduction processes (ARPs), Sci. Total Environ., vol. 688, pp. 65–74.

DOI: 10.1016/j.scitotenv.2019.06.210.

Zhao Y., Cho C. W., Wang D., Choi J. W., Lin S., and Yun Y. S., (2020). Simultaneous scavenging of persistent pharmaceuticals with different charges by activated carbon fiber from aqueous environments. Chemosphere, (247), 125909.

DOI: 10.1016/j.chemosphere.2020.125909

Publicado
2023-12-15
Cómo citar
Moreno-Islas, M. D., Mendoza-Huizar, L. H., Álvarez-Romero, G. A., & Vázquez-Rodríguez, G. A. (2023). Estudio computacional del proceso de adsorción de las especies aniónica, protonada y par iónico del diclofenaco sobre una superficie de fibra de carbono. Pädi Boletín Científico De Ciencias Básicas E Ingenierías Del ICBI, 11(Especial5), 149-155. https://doi.org/10.29057/icbi.v11iEspecial5.11636

Artículos más leídos del mismo autor/a