Waste Tetra Pak containers and its use in construction materials
DOI:
https://doi.org/10.29057/icbi.v11iEspecial5.11708Keywords:
Tetra Pak, multilayer packaging, building materials, gamma radiation, mechanical propertiesAbstract
This work studies the incorporation of Tetra Pak packaging waste into construction materials. The results show a multifunctional use of such waste, since not only the mechanical properties are improved (without the need to recycle or modify the packages), but also environmental pollution is reduced by not dumping them in landfills. In addition, a valuable alternative based on the use of gamma rays for the treatment and recycling of waste materials is studied, which presents important advantages over traditional methods as it does not generate by-products or harmful residues.
Downloads
Publication Facts
Reviewer profiles N/A
Author statements
Indexed in
- Academic society
- N/A
References
Askeland, D. R., & Wright, W. J. (2016). Ciencia e ingeniería de materiales. Cengage Learning. México.
Bekhta, P., Lyutyy, P., Hiziroglu, S., & Ortynska, G. (2016). Properties of composite panels made from Tetra-Pak and polyethylene waste material. Journal of Polymers and the Environment, 24: 159–165. DOI: 10.1007/s10924-016-0758-7
Brock, J. (Ed.). (2021). Gamma Irradiation: Properties, Effects and Development of New Materials. Nova Science Publishers: USA.
Callister, W. D., & Rethwisch, D. G. (2017). Materials Science and Engineering: An Introduction. Wiley: USA.
Cihad-Bal, B. (2022). Mechanical properties of wood-plastic composites produced with recycled polyethylene, used Tetra Pak® boxes, and wood flour. BioResources, 17(4): 6569-6577. DOI: 10.15376/biores.17.4.6569-6577
Dodiuk, H. (2021). Handbook of Thermoset Plastics. Elsevier Science. United Kingdom.
Dölle, K., & Kavin-Chinnathambi-Jeeva, N. (2022). Aseptic packaging container recovery – A review. Journal of Materials Science Research and Reviews, 10 (1): 38-51. http://institutearchives.uk/id/eprint/18
Drobny, J. G. (2021). Radiation Technology for Polymers. CRC Press: USA.
Ebadi, M., Farsi, M., Narchin, P., & Madhoushi, M. (2016). The effect of beverage storage packets (Tetra Pak™) waste on mechanical properties of wood–plastic composites. Journal of Thermoplastic Composite Materials, 19 (12): 1601–1610. DOI: 10.1177/0892705715618745
Foti, D., Adamopoulos, S., Voulgaridou, E., Voulgaridis, E., Passialis, C., Amiandamhen, S. O., & Daniel, G. (2019). Microstructure and compressive strength of gypsum-bonded composites with papers, paperboards, and Tetra Pak recycled materials. Journal of Wood Science, 65 (42): 1-8. DOI: 10.1186/s10086-019-1821-5
Gao, S., Li, Q. Y., & Sun, C. X. (2011). Experimental research on the durability of WPC wallboard made of paper-aluminum-plastics wastes. Materials Science Forum, 675–677: 423–425. DOI: 10.4028/www.scientific.net/msf.675-677.423
Guillén-Mallette, J., Carrillo-Baeza, J., Aranda-Ayala, A., & Rivero-Ayala, M. (2021). Optimization of processability and physical and mechanical properties of extruded polyethylene-Tetra Pak cartons composites by experimental design. Journal of Thermoplastic Composite Materials, 34(11): 1462-1487. DOI: 10.1177/0892705719873944
Hassanin, A. H., & Candan, Z. (2010). Novel bio-based composites panels from Tetra Pak waste. Key Engineering Materials, 689: 138–142. DOI: 10.4028/www.scientific.net/KEM.689.138
Harper, C. A. Handbook of Plastics Technologies: The Complete Guide to Properties and Performance. McGraw Hill LLC: Ukraine.
Khan-Rezaul, K., Shauddin, S. M., Dhar, S. S., & Khan-Mubarak, A. (2014). Comparative experimental studies on the physico-mechanical properties of jute caddies reinforced polyester and polypropylene composites. Journal of Polymer and Biopolymer Physics Chemistry, 2(3): 55-61. DOI: 10.12691/jpbpc-2-3-3
Klyosov, A. A., & Klesov, A. A. (2007). Wood-plastic composites. Wiley: United Kingdom.
Koh-Dzul, J. F., Carrillo, J. G., Guillen-Mallette, J., & Flores-Johnson, E. A. (2023). Low velocity impact behaviour and mechanical properties of sandwich panels with cores made from Tetra Pak waste. Composite Structures, 304: 1-12. DOI: 10.1016/j.compstruct.2022.116380
Kuzmin, A. M., Ayrilmis, N., Özdemir, F., & Kanat, G. (2023). Effect of content and particle size of used beverage carton pieces on the properties of HDPE composites. BioResources, 18(2): 2815-2825. DOI: 10.15376/biores.18.2.2815-2825
Macías-Gallego, S., Guzmán-Aponte, A., Buitrago-Sierra, R., & Santa-Marín, J. F. (2020). Evaluation of mechanical properties of composites manufactured from recycled Tetra Pak® containers. Tecnura, 24 (66): 36-46. DOI: 10.14483/22487638.16296
Martínez-López, M., Martínez-Barrera, G., Barrera-Diáz, C., Ureña-Nuñez, F., & Witold, B. (2015). Waste materials from Tetra Pak packages as reinforcement of polymer concrete. International Journal of Polymer Science, 2015: 1-8. DOI: 10.1155/2015/763917
Niaki, M. H., & Ahangari, M. G. (2022). Polymer Concretes, Advanced Construction Materials. CRC Press: USA. DOI: 10.1201/9781003326311
Nieves-Flores, J. J. (2015). Reciclaje mecánico y por radiación gamma de envases de Tetra Pak Brik Aseptic® para la modificación de propiedades físicas y mecánicas y su reuso como sustituto de agregado fino en concreto. Tesis de Licenciatura, UAEMex. http://hdl.handle.net/20.500.11799/32693
Ohama, Y. (2008). 12-Polymer concrete. In S. Mindess (Ed.), Developments in the Formulation and Reinforcement of Concrete (pp. 256-269). Woodhead Publishing Limited: United Kingdom. DOI: 10.1533/9781845694685.256
Parada-Soria, A., Yao, H. F., Alvarado-Tenorio, B., Sanchez-Cadena, L., & Romo-Uribe, A. (2013). Recycled HDPE-tetrapack composites: isothermal crystallisation, light scattering and mechanical properties. Mater Res Soc Symp Proc, 1485: 77–82. DOI: 10.1557/opl.2013.252
Platnieks, O., Barkane, A., Ijudina, N., Gaidukova, G., Kumar-Thakur, V., & Gaidukovs, S. (2020). Sustainable Tetra Pak recycled cellulose/poly(butylene succinate)-based woody-like composites for a circular economy. Journal of Cleaner Production, 270: 1-16. DOI: 10.1016/j.jclepro.2020.122321
Rahman, H., Alimuzzaman, S., Alamgir-Sayeed, M. M., & Amin-Khan, R. (2019). Effect of gamma radiation on mechanical properties of pineapple leaf fiber (PALF)-reinforced low-density polyethylene (LDPE) composites. International Journal of Plastics Technology, 23: 229–238. DOI: 10.1007/s12588-019-09253-4
Robertson, G. L. (2021). Recycling of aseptic beverage cartons: a review. Recycling, 6(1): 1-20. DOI: 10.3390/recycling6010020
Rowell, R. M. (2013). Handbook of Wood Chemistry and Wood Composites (Second Edition). Taylor & Francis: United Kingdom.
Salamanca-Sarmiento, J. R., & Vaca-Rodríguez, J. S. (2017). Caracterización de un material compuesto de Tetra Pak, reforzado con polietileno de baja densidad (PEBD) y conformado en prensa de calor. Ingenio Magno, 8(1): 132-147. http://revistas.ustatunja.edu.co/index.php/ingeniomagno/article/view/1394
Salazar-Jurado, E., Fonthal-Rivera, G., & Gómez-Hernández, E. (2021). A new material with low density and low










