Envases Tetra Pak y su uso en materiales de construcción

Palabras clave: Tetra Pak, envases multicapa, materiales de construcción, radiación gamma, propiedades mecánicas

Resumen

En este trabajo de investigación, se estudiaron los efectos de añadir desechos de envases Tetra Pak en la elaboración de materiales utilizados en el área de la construcción. Los resultados demuestran que el uso de los desechos conlleva un carácter multifuncional, ya que no solo mejoran los valores de propiedades mecánicas sin la necesidad de realizar un proceso de reciclamiento o separación de sus componentes, sino que ayudan a reducir la cantidad de desechos arrojados al medio ambiente. Adicionalmente, se estudia el uso de la radiación gamma como metodología para el reciclamiento y modificación de materiales de desecho, entre ellos los envases Tetra Pak. Metodología que ofrecen considerables ventajas sobre los métodos convencionales de reciclamiento, entre estas la no generación de subproductos y/o residuos no deseados.

Descargas

La descarga de datos todavía no está disponible.

Citas

Askeland, D. R., & Wright, W. J. (2016). Ciencia e ingeniería de materiales. Cengage Learning. Mexico.

Bekhta, P., Lyutyy, P., Hiziroglu, S., &Ortynska, G. (2016). Properties of Composite panels made from Tetra-Pak and polyethylene waste material. Journal of Polymers and the Environment, 24: 159–165.

DOI: 10.1007/s10924-016-0758-7

Brock, J. (Ed). (2021). Gamma Irradiation: Properties, Effects and Development of New Materials. Nova Science Publishers: USA.

Callister, W.D., & Rethwisch, D.G. (2017). Materials Science and Engineering. An introduction. Wiley: USA.

Cihad-Bal, B. (2022). Mechanical properties of wood-plastic composites produced with recycled polythylene, used Tetra Pak® boxes, and wood flour. BioResources, 17(4): 6569-6577.

DOI: 10.15376/biores.17.4.6569-6577

Dodiuk, H. (2021). Handbook of Thermoset Plastics. Elsevier Science. United Kingdom.

Dölle, K., & Kavin-Chinnathambi-Jeeva, N. (2022). Aseptic Packaging Container Recovery – A Review. Journal of Materials Science Research and Reviews, 10 (1): 38-51.

http://institutearchives.uk/id/eprint/18

Drobny, J.G. (2021). Radiation Technology for Polymers. CRC Press: USA.

Ebadi, M., Farsi, M., Narchin, P., &Madhoushi, M. (2016). The effect of beverage storage packets (Tetra Pak™) waste on mechanical properties of wood–plastic composites. Journal of Thermoplastic Composite Materials, 19 (12): 1601–1610.

DOI: 10.1177/0892705715618745

Foti, D., Adamopoulos, S., Voulgaridou, E., Voulgaridis, E., Passialis, C., Amiandamhen, S.O., & Daniel G. (2019). Microstructure and compressive strength of gypsum‑bonded composites with papers, paperboards and Tetra Pak recycled materials. Journal of Wood Science, 65 (42): 1-8.

DOI: 10.1186/s10086-019-1821-5

Gao, S., Li, Q.Y., & Sun, C.X. (2011). Experimental research on the durability of WPC wallboard made of paper-aluminum-plastics wastes. MaterialsScienceForum, 675–677: 423–425.

DOI: 10.4028/www.scientific.net/msf.675-677.423

Guillén-Mallette, J., Carrillo-Baeza, J., Aranda-Ayala, A., & Rivero-Ayala, M. (2021). Optimization of processability and physical and mechanical properties of extruded polyethylene- Tetra Pak cartons composites by experimental design. Journal of Thermoplastic Composite Materials, 34(11): 1462-1487.

DOI: 10.1177/0892705719873944

Hassanin, A. H., & Candan, Z. (2010). Novel bio-based composites panels from TetraPak waste. Key Engineering Materials, 689: 138–142

DOI: 10.4028/www.scientific.net/KEM.689.138

Harper, C.A. Handbook of Plastics Technologies: The Complete Guide to Properties and Performance. McGraw Hill LLC: Ukraine.

Khan-Rezaul, K., Shauddin, S.M., Dhar, S.S., & Khan-Mubarak, A. (2014). Comparative experimental studies on the physico-mechanical properties of jute caddies reinforced polyester and polypropylene composites. Journal of Polymer and Biopolymer Physics Chemistry, 2(3): 55-61.

DOI: 10.12691/jpbpc-2-3-3

Klyosov, A.A., &Klesov, A.A. (2007). Wood-plastic composites. Wiley: United Kingdom.

Koh-Dzul, J.F., Carrillo, J.G., Guillen-Mallette, J., & Flores-Johnson, E.A. (2023). Low velocity impact behaviour and mechanical properties of sandwich panels with cores made from Tetra Pak waste. Composite Structures, 304: 1-12.

DOI: 10.1016/j.compstruct.2022.116380

Kuzmin, A.M., Ayrilmis, N., Özdemir, F., & Kanat, G. (2023). Effect of content and particle size of used beverage carton pieces on the properties of HDPE composites, BioResources 18(2): 2815-2825.

DOI: 10.15376/biores.18.2.2815-2825

Macías-Gallego, S., Guzmán-Aponte, A., Buitrago-Sierra, R., Santa-Marín, J.F. (2020). Evaluation of mechanical properties of composites manufactured from recycled Tetra Pak® containers. Tecnura, 24 (66): 36-46.

DOI: 10.14483/22487638.16296

Martínez-López, M., Martínez-Barrera. G., Barrera-Diáz. C., Ureña-Nuñez. F., & Witold, B. (2015). Waste Materials from Tetra Pak Packages as Reinforcement of polymer concrete. International Journal of Polymer Science, 2015: 1-8.

DOI: 10.1155/2015/763917

Niaki, M.H., Ahangari, M.G. (2022). Polymer Concretes, Advanced Construction Materials, CRC Press: USA.

DOI: 10.1201/9781003326311

Nieves-Flores. J.J. (2015). Reciclaje mecánico y por radiación gamma de envases de Tetra Pak Brik Aseptic® para la modificación de propiedades físicas y mecánicas y su reuso como sustituto de agregado fino en concreto. Tesis de Licenciatura, UAEMex.

http://hdl.handle.net/20.500.11799/32693

Ohama, Y. (2008). 12-Polymer concrete (ed. Mindess, S.). Developments in the Formulation and Reinforcement of Concrete (256-269). Woodhead Publishing Limited: United Kingdom.

DOI: 10.1533/9781845694685.256

Parada-Soria, A., Yao, H.F., Alvarado-Tenorio, B., Sanchez-Cadena, L., & Romo-Uribe, A. (2013). Recycled HDPE-tetrapack composites. Isothermal crystallisation, light scattering and mechanical properties. Mater Res Soc Symp Proc, 1485: 77–82.

DOI: 10.1557/opl.2013.252

Platnieks, O., Barkane, A., Ijudina, N., gaidukova, G., Kumar-Thakur, V., &Gaidukovs, S. (2020). Sustainable Tetra Pak recycled cellulose/poly (butylene succinate) based woody-like composites for a circular economy. Journal of Cleaner Production, 270: 1-16.

DOI: 10.1016/j.jclepro.2020.122321

Rahman, H., Alimuzzaman, S., Alamgir-Sayeed, M. M., & Amin-Khan, R. (2019). Effect of gamma radiation on mechanical properties of pineapple leaf fiber (PALF)‑reinforced low‑density polyethylene (LDPE) composites. International Journal of Plastics Technology, 23: 229–238.

DOI: 10.1007/s12588-019-09253-4

Robertson, G. L. (2021). Recycling of Aseptic Beverage Cartons: A Review. Recycling, 6(1): 1-20.

DOI: 10.3390/recycling6010020

Rowell, R. M. (2013). Handbook of Wood Chemistry and Wood Composites, Second Edition. Taylor & Francis:UnitedKingdom.

Salamanca-Sarmiento, J. R., & Vaca-Rodríguez, J.S. (2017). Caracterización de un material compuesto de Tetra Pak, reforzado con polietileno de baja densidad (PEBD) y conformado en prensa de calor. Ingenio Magno, 8(1): 132-147.

http://revistas.ustatunja.edu.co/index.php/ingeniomagno/article/view/1394

Salazar-Jurado. E., Fonthal-Rivera, G., & Gómez-Hernández, E. (2021). A new material with low density and low thermal conductivity using post-consumer Tetra Pak packages. Journal of Physics: Conference Series, 2046: 1-8.

DOI: 10.1088/1742-6596/2046/1/012040

Sen, S., Ayrilmis, N., & Candan, Z. (2010). Fungicide and insecticide properties of cardboard panels made from used beverage carton with veneer overlay. African Journal Agriculture Research, 5(2): 159–165.

DOI: 10.5897/AJAR09.592

Smith, W. F., & Javad, H. (2006). Fundamentos de la Ciencia e Ingeniería de Materiales. McGraw-Hill Interamericana: México.

Strong, A.B. (2000). Plastics: Materials and Processing. Prentice Hall:United Kingdom.

Sun, X., & Zhang, Q.H. (2013). Study on the optimum hot-pressing process and surface decoration of waste Tetra Pak/Sawdust composite board. Advanced Materials Research, 710: 147–151.

DOI: 10.4028/www.scientific.net/amr.710.147

Viksne, A., Berzina, R., Andersone, I., &Belkova, L. (2010). Study of plastic compounds containing polypropylene and wood derived fillers from waste of different origin. Journal of Applied Polymer Science, 117: 368-377.

DOI: 10.1002/app.31479

Yilgor, N., Köse, C., Terzi, E., Figen, A.K., Ibach, R., Kartal, S.N., & Pişkin, S. (2014). Degradation behavior and accelerated weathering of composite boards produced from waste Tetra Pak® packaging materials. BioResources, 9 (3): 4784-4807.

Publicado
2023-12-15
Cómo citar
Martínez-Barrera, G., & Escobar-Campos, C. U. (2023). Envases Tetra Pak y su uso en materiales de construcción. Pädi Boletín Científico De Ciencias Básicas E Ingenierías Del ICBI, 11(Especial5), 1-6. https://doi.org/10.29057/icbi.v11iEspecial5.11708