Bound states in graphene under the interaction of magnetic field

Keywords: Graphene, Asymptotic Iteration Method, Bound states, Discrete spectrum

Abstract

In this work we study exact solutions for the bound states for a Dirac electron in Graphene under the interacion of several external magnetic fields with translational symmetry. Using the Asymptotic Iteration Method, the time-independent Dirac-Weyl equation is solved. Finally, the behaviors of the discrete spectrum are studied.

Downloads

Download data is not yet available.

References

CCastro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S., & Geim, A. K. (2009). The electronic properties of graphene. Reviews of Modern Physics, 81(1), 109–162. https://doi.org/10.1103/revmodphys.81.109

Cho, H. T., Cornell, A. S., Doukas, J., Huang, T.-R., & Naylor, W. (2012). A new approach to black hole quasinormal modes: A review of the asymptotic iteration method. Advances in Mathematical Physics, 2012, 1–42. https://doi.org/10.1155/2012/281705

Ciftci, H., Hall, R. L., & Saad, N. (2003). Asymptotic iteration method for eigenvalue problems. Journal of physics A: Mathematical and general, 36(47), 11807–11816. https://doi.org/10.1088/0305-4470/36/47/008

da Silva Leite, L. G., Filgueiras, C., Cogollo, D., & Silva, E. O. (2015). Influence of spatially varying pseudo-magnetic field on a 2D electron gas in graphene. Physics Letters. A, 379(10–11), 907–911. https://doi.org/10.1016/j.physleta.2015.01.007

de Souza, J. F. O., de Lima Ribeiro, C. A., & Furtado, C. (2014). Bound states in disclinated graphene with Coulomb impurities in the presence of a uniform magnetic field. Physics Letters. A, 378(30–31), 2317–2324. https://doi.org/10.1016/j.physleta.2014.05.053

Eshghi, M., & Mehraban, H. (2017). Exact solution of the Dirac–Weyl equation in graphene under electric and magnetic fields. Comptes Rendus. Physique, 18(1), 47–56. https://doi.org/10.1016/j.crhy.2016.06.002

Ghosh, T. K. (2009). Exact solutions for a Dirac electron in an exponentially decaying magnetic field. Journal of physics. Condensed matter: an Institute of Physics journal, 21(4), 045505. https://doi.org/10.1088/0953-8984/21/4/045505

Jiménez-Camargo, M., Pedraza-Ortega, O., & López-Suarez, L. A. (2022). Modos cuasi normales para un agujero negro Schwarzschild de Sitter rodeado de quintaesencia: Método de Iteración Asintótica. PÄDI boletín científico de ciencias básicas e ingenierías del ICBI, 10(Especial), 29–35. https://doi.org/10.29057/icbi.v10iespecial.8244

Kotov, V. N., Uchoa, B., Pereira, V. M., Guinea, F., & Castro Neto, A. H. (2012). Electron-electron interactions in graphene: Current status and perspectives. Reviews of Modern Physics, 84(3), 1067–1125. https://doi.org/10.1103/revmodphys.84.1067

Kuru, Ş., Negro, J., & Nieto, L. M. (2009). Exact analytic solutions for a Dirac electron moving in graphene under magnetic fields. Journal of physics. Condensed matter: an Institute of Physics journal, 21(45), 455305. https://doi.org/10.1088/0953-8984/21/45/455305

Miransky, V. A., & Shovkovy, I. A. (2015). Quantum field theory in a magnetic field: From quantum chromodynamics to graphene and Dirac semimetals. Physics Reports, 576, 1–209. https://doi.org/10.1016/j.physrep.2015.02.003

Peres, N. M. R., & Castro, E. V. (2007). Algebraic solution of a graphene layer in transverse electric and perpendicular magnetic fields. Journal of physics. Condensed matter: an Institute of Physics journal, 19(40), 406231. https://doi.org/10.1088/0953-8984/19/40/406231

Silvestrov, P. G., & Efetov, K. B. (2007). Quantum dots in graphene. Physical Review Letters, 98(1). https://doi.org/10.1103/physrevlett.98.016802

Song, Y., & Guo, Y. (2011). Electrically induced bound state switches and near-linearly tunable optical transitions in graphene under a magnetic field. Journal of Applied Physics, 109(10). https://doi.org/10.1063/1.3583650

Published
2023-12-15
How to Cite
López-Juárez, N. Y., Pedraza-Ortega, O., López-Suarez, L. A., & Arceo-Reyes, R. (2023). Bound states in graphene under the interaction of magnetic field. Pädi Boletín Científico De Ciencias Básicas E Ingenierías Del ICBI, 11(Especial5), 161-168. https://doi.org/10.29057/icbi.v11iEspecial5.11716