Electro-oxidación de ácido fórmico catalizada por nanopartículas paladio-oro

Palabras clave: Nanopartículas, electro-oxidación, Pd-Au, Ácido fórmico

Resumen

En el presente trabajo se analizó el efecto del contenido de paladio en las nanopartículas de paladio-oro sintetizadas por un método químico para la electro-oxidación de ácido fórmico en medio ácido, a través del estudio potenciostático para obtener la densidad de corriente en estado estacionario (jss). La evaluación electroquímica fue realizada mediante las técnicas de voltamperometría cíclica (VC) y cronoamperometría (CA). Los electrocatalizadores obtenidos, fueron caracterizados por las Difracción de Rayos X (XRD), Microscopía Electrónica de Transmisión (TEM), Microscopía Electrónica de Barrido (SEM) y Espectroscopía de Energías Dispersivas de Rayos X (EDX).

Descargas

La descarga de datos todavía no está disponible.

Citas

Aslam, N. M., Masdar, M. S., Kamarudim, S. K., Daud, W. R. W., (2012), Overview on Direct Formic Acid Fuel Cells (DFAFCs) as an Energy Sources., Procedia APCBEE, 333-39.

DOI: http://dx.doi.org/10.1016/j.apcbee.2012.06.042

Behling, H., (2013), Fuel Cells: Current Technology Challenges and Future Research Needs. N.

DOI: https://shop.elsevier.com/books/fuel-cells/behling/978-0-444-56325-5

Busó Rogero, C. A., (2016), Oxidación de etanol y ácido fórmico en nano cristales de platino: Electrocatálisis y reactividad superficial., Instituto Universitario de Electroquímica, Universidad de Alicante, España.

DOI: https://rua.ua.es/dspace/bitstream/10045/58758/1/tesis_buso_rogero.pdf

Calderon Gómez, C., Moliner, R., Lazaro, M. J., (2016), Catalysts, Palladium-Based Catalysts as Electrodes for Direct Methanol Fuel Cells: A Las Ten Years Review, J., 6 130.

DOI: https://doi.org/10.3390/catal6090130

Cazares Ávila, E., Ruiz, E. J., Hernández Ramírez, A., Rodríguez Varela, F. J., Morales Acosta, M. D., Morales Acosta, D., (2017), Effect of OMC and MWNTC support on mass activity of Pd-Co catalyst for formic acid electro-oxidation., Int. J. Hydrog. Energy, 12 30349-30358.

DOI: https://doi.org/10.1016/j.ijhydene.2017.08.156

Chiou, Y. J., Wu, G. H., Lin, H. M., Borodzinski, A., Kedzierzawski, P., Hindawi, L. S., (2018), Synthesis and Electrocatalytical Application of Hybrid Pd/Metal Oxides/MWCNTs, Int. J. Electrochem.

DOI: http://dx.doi.org/10.1155/2018/8416268

Demirci, U. B., (2007), Direct liquid-feed fuel cells: Thermodynamic and environmental concerns. J. Power Sources, 169 239-246.

DOI: https://doi.org/10.1016/j.jpowsour.2007.03.050Hao

Douk, A. S., Saravani, H., Noroozifar, M., (2018), A fast method to prepare Pd-Co nanostructures decorated on graphene as excellent electrocatalyst toward formic acid oxidation, J. Alloys Compd, 739-882-891.

DOI: https://doi.org/10.1016/j.jallcom.2017.12.272

Elnabawy, O., Herron, J. A., Scaranto, J., Mavrikakis, M., (2018), Structure Sensitivity of Formic Acid Electrooxidation on Transition Metal Surfaces: A First-Principles Study, J. Electrochem. Soc, 165 J3109-J3121.

DOI: https://doi.org/10.1149/2.0161815jes

Hao Yu, E., Krewer, U., Scott, K., (2010), Principles and Materials Aspects of Direct Alkaline Alcohol Fuel Cells, Energies, Review, 3 1499-1528.

DOI: https://doi.org/10.3390/en3081499

Hoogers, G., (2003), Fuel Cell Technology Handbook.

Hoshi, N., Kida, K., Nakamura, M., Nakada, M., Osada, K., (2006), Structural Effects of Electrochemical Oxidation of Formic Acid on Single Crystal Electrodes of Palladium, J. Phys. Chem, 110 12480-12484.

DOI: https://doi.org/10.1021/jp0608372

Li, H., Sun, G., Jiang, Q., Zhu, M., Sun, S., Xin, Q., (2007), Synthesis of highly dispersed Pd/C electro-catalyst with high activity for formic acid oxidation, Electrochem. Commun, 9 1410-1415.

DOI: https://doi.org/10.1016/j.elecom.2007.01.032

Liu, Y., Wang, L., Wang, G., Deng, C., Wu, B., Gao, Y., (2010), High Active Carbon Supported PdAu Catalyst for Formic Acid Electrooxidation and Study of the Kinetics, J. Phys. Chem, 114 21417-21422.

DOI: https://doi.org/10.1021/jp105779r

Ong, B. C., Kamarudin, S. K., Basri, S., (2017), Direct liquid fuel cells: A review, Science Direct, 12 10142-10157.

DOI: https://doi.org/10.1016/j.ijhydene.2017.01.117

Qian, W., Wilkinson, D. P., Shen, J., Wang, H., Zhang, J., (2006), Architecture for portable direct liquid fuel cells., J. Power Sources, 154 202-213.

DOI: https://doi.org/10.1016/j.jpowsour.2005.12.019

Rutkowska, I. A., Marks, D., Perruchot, C., Jouini, M., Kulesza, P. J., (2013), Admixing palladium nanoparticles with tungsten oxide nanorods toward more efficient electrocatalytic oxidation of formic acid. Collods Surf. A: Physicochem. Eng. Asp, 439 200-206.

DOI: https://doi.org/10.1016/j.colsurfa.2013.04.007

Soloveichik, G. L., (2014), Nanotech, B. J., Liquid fuel cells. 5 1399-1418.

DOI: https://doi.org/10.3762/bjnano.5.153

Sun, S., Wang, Y., Wang, L., Guo, T., Yuan, X., Zhang, D., Xue, Z., Zhou, X., Lu, J. X., (2019), Synthesis of Au@ nitrogen-doped carbon quantum dots @Pt core-shell structure nanoparticles for enhanced methanol electrooxidation, Alloys Compd, 793 635-645.

DOI: https://doi.org/10.1016/j.jallcom.2019.04.212

Yu, E., Krewer, U., Scott, K., (2010), Principles and Materials Aspects of Direct Alkaline Alcohol Fuel Cells. Energies, Review, 3 1499-1528.

DOI: 10.3390/en3081499

Yang, J., Luo, C., He, S., Li, J., Meng, B., Zhang, D., Xue, Z., Zhou, X., Lu, X., (2019), Synthesis of three-dimensional Au-graphene quantum dots @Pt core-shell dendritic nanoparticles for enhanced methanol electro-oxidation, Nanotechnology, 30 495706.

DOI: https://doi.org/10.1088/1361-6528/ab3dc3

Publicado
2023-12-15
Cómo citar
Medina-Rojano, V., Avalos-Huarte, E., Montes de Oca-Yemha, M. G., Romero-Romo, M. A., & Palomar-Pardavé, M. E. (2023). Electro-oxidación de ácido fórmico catalizada por nanopartículas paladio-oro. Pädi Boletín Científico De Ciencias Básicas E Ingenierías Del ICBI, 11(Especial5), 44-49. https://doi.org/10.29057/icbi.v11iEspecial5.11777