Síntesis hidrotermal de puntos cuánticos de carbono PEGilados

Palabras clave: polyetilenglycol, puntos cuánticos de carbono, hidrotermal, luminiscence

Resumen

En este estudio se utilizó el método hidrotermal para la síntesis de puntos cuánticos de carbono o Carbon Quantum Dots (CQDs) a partir de piña (Ananas Comosus L.), los cuales fueron recubiertos con polietilenglicol (PEG BioUltra 8,000), variando la concentración de este último y el pH de la solución. Las nanopartículas obtenidas poseen propiedades de absorbancia dentro del rango ultravioleta a longitudes de onda entre los 200 y 300 nm en todas las muestras, excepto la muestra sin PEG, la cual presentan una absorbancia que comienza a los 300 nm y se extiende hacia el visible. Los CQDs tienen la propiedad de fotosintonización observando emisiones en color cian y verde al variar la longitud de onda de excitación.  En fotoluminiscencia, las muestras fueron excitadas a 440 nm, con emisiones entre los 514 y los 537 nm en función de las caract5eristicas de cada muestra. Los CQDs presentan grupos orgánicos oxigenados C-O, que permiten la modificación de superficie. Por otra parte, se aumentó la protonación y desprotonación de los CQDs al variar el pH, analizando su efecto en el recubrimiento CQDs-PEG. A partir de los datos de absorbancia, se determinó la brecha de energía (Egap) determinando un aumento de 0.4 eV en la Egap de las partículas al modificar la superficie. Estos resultados muestran que CQDs y los PEG-CQDs presentan cambios en sus propiedades ópticas y electrónicas eficientes por lo que son candidatos prometedores para aplicaciones innovadoras como marcadores fluorescentes.

Descargas

La descarga de datos todavía no está disponible.

Citas

Bandi, Rajkumar, Bhagavanth Reddy Gangapuram, Ramakrishna Dadigala, Ravikumar Eslavath, Surya S. Singh, and Veerabhadram Guttena. 2016. “Facile and Green Synthesis of Fluorescent Carbon Dots from Onion Waste and Their Potential Applications as Sensor and Multicolour Imaging Agents.” RSC Advances 6(34):28633–39. doi: 10.1039/c6ra01669c.

Bao, Lei, Zhi Ling Zhang, Zhi Quan Tian, Li Zhang, Cui Liu, Yi Lin, Baoping Qi, and Dai Wen Pang. 2011. “Electrochemical Tuning of Luminescent Carbon Nanodots: From Preparation to Luminescence Mechanism.” Advanced Materials 23(48):5801–6. doi: 10.1002/adma.201102866.

Benner, Dawson, Pankaj Yadav, and Dhiraj Bhatia. 2023. “Red Emitting Carbon Dots: Surface Modifications and Bioapplications.” Nanoscale Advances 4337–53. doi: 10.1039/d3na00469d.

Bhattacharyya, Santanu, Florian Ehrat, Patrick Urban, Roland Teves, Regina Wyrwich, Markus Döblinger, Jochen Feldmann, Alexander S. Urban, and Jacek K. Stolarczyk. 2017. “Effect of Nitrogen Atom Positioning on the Trade-off between Emissive and Photocatalytic Properties of Carbon Dots.” Nature Communications 8(1):1–9. doi: 10.1038/s41467-017-01463-x.

Bourlinos, Athanasios B., Andreas Stassinopoulos, Demetrios Anglos, Radek Zboril, Michael Karakassides, and Emmanuel P. Giannelis. 2008. “Surface Functionalized Carbogenic Quantum Dots.” Small 4(4):455–58. doi: 10.1002/smll.200700578.

Dabbousi, B. O., J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi. 1997. “(CdSe)ZnS Core−Shell Quantum Dots: Synthesis and Characterization of a Size Series of Highly Luminescent Nanocrystallites.” The Journal of Physical Chemistry B 101(46):9463–75. doi: 10.1021/jp971091y.

Ding, Hui, Yuan Ji, Ji Shi Wei, Qing Yu Gao, Zi Yuan Zhou, and Huan Ming Xiong. 2017. “Facile Synthesis of Red-Emitting Carbon Dots from Pulp-Free Lemon Juice for Bioimaging.” Journal of Materials Chemistry B 5(26):5272–77. doi: 10.1039/c7tb01130j.

Feghhi, Fazeleh, Ava Minagar, and H. R. Madaah Hosseini. 2023. “Bandgap Tailoring and Enhancing the Aromatization in Cysteine-Based Carbon Dots.” Journal of Colloid and Interface Science 651(March):36–46. doi: 10.1016/j.jcis.2023.07.157.

Gan, Jian, Lizhen Chen, Zhijun Chen, Jilei Zhang, Wenji Yu, Caoxing Huang, Yan Wu, and Kai Zhang. 2023. “Lignocellulosic Biomass-Based Carbon Dots: Synthesis Processes, Properties, and Applications.” Small 2304066:1–34. doi: 10.1002/smll.202304066.

Gonçalves, Helena, and Joaquim C. G. Esteve. Da Silva. 2010. “Fluorescent Carbon Dots Capped with PEG 200 and Mercaptosuccinic Acid.” Journal of Fluorescence 20(5):1023–28. doi: 10.1007/s10895-010-0652-y.

Hamley, Ian W. 2014. “PEG − Peptide Conjugates.”

Jia, Xiaofang, Jing Li, and Erkang Wang. 2012. “One-Pot Green Synthesis of Optically PH-Sensitive Carbon Dots with Upconversion Luminescence.” Nanoscale 4(18):5572–75. doi: 10.1039/c2nr31319g.

Jiang, Chengkun, Hao Wu, Xiaojie Song, Xiaojun Ma, Jihui Wang, and Mingqian Tan. 2014. “Presence of Photoluminescent Carbon Dots in Nescafe®original Instant Coffee: Applications to Bioimaging.” Talanta 127:68–74. doi: 10.1016/j.talanta.2014.01.046.

Kang, Yunyan, Dongna Li, Riyue Dong, Haoran Zhang, Wei Li, Xuejie Zhang, Xian Yang, and Bingfu Lei. 2022. “Multicolor Carbon Dots Assembled Polyvinyl Alcohol with Enhanced Emission for White Light-Emitting Diode.” Journal of Luminescence 251(June):119164. doi: 10.1016/j.jlumin.2022.119164.

Kundu, Aniruddha, Jungpyo Lee, Byeongho Park, Chaiti Ray, K. Vijaya Sankar, Wook Sung Kim, Soo Hyun Lee, Il Joo Cho, and Seong Chan Jun. 2018. “Facile Approach to Synthesize Highly Fluorescent Multicolor Emissive Carbon Dots via Surface Functionalization for Cellular Imaging.” Journal of Colloid and Interface Science 513:505–14. doi: 10.1016/j.jcis.2017.10.095.

Li, Hui, Changzheng Wang, Xicheng Li, Yuyi Han, and Yang Zhang. 2023. “Facile Synthesis of PEG-Modified Fluorescent Carbon Dots for Highly Sensitive Detection of Ag+.” Dyes and Pigments 219(July):111534. doi: 10.1016/j.dyepig.2023.111534.

Li, Huijun, Sancan Han, Bowen Lyu, Ting Hong, Shibo Zhi, Ling Xu, Fengfeng Xue, Liman Sai, Junhe Yang, Xianying Wang, and Bin He. 2021. “Tunable Light Emission from Carbon Dots by Controlling Surface Defects.” Chinese Chemical Letters 32(9):2887–92. doi: 10.1016/j.cclet.2021.03.051.

Li, Linbo, and Tao Dong. 2018. “Photoluminescence Tuning in Carbon Dots: Surface Passivation or/and Functionalization, Heteroatom Doping.” Journal of Materials Chemistry C 6(30):7944–70. doi: 10.1039/c7tc05878k.

Lim, Shi Ying, Wei Shen, and Zhiqiang Gao. 2015. “Carbon Quantum Dots and Their Applications.” Chemical Society Reviews 44(1):362–81. doi: 10.1039/c4cs00269e.

Liu, Meng Li, Bin Bin Chen, Chun Mei Li, and Cheng Zhi Huang. 2019. “Carbon Dots: Synthesis, Formation Mechanism, Fluorescence Origin and Sensing Applications.” Green Chemistry 21(3):449–71. doi: 10.1039/c8gc02736f.

Liu, Weijian, Chun Li, Yanjing Ren, Xiaobo Sun, Wei Pan, Yanhua Li, Jinping Wang, and Weijun Wang. 2016. “Carbon Dots: Surface Engineering and Applications.” Journal of Materials Chemistry B 4(35):5772–88. doi: 10.1039/c6tb00976j.

Mao, Xiao Jiao, Hu Zhi Zheng, Yi Juan Long, Juan Du, Jian Yu Hao, Ling Ling Wang, and Dong Bo Zhou. 2010. “Study on the Fluorescence Characteristics of Carbon Dots.” Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy 75(2):553–57. doi: 10.1016/j.saa.2009.11.015.

Mehta, Akansha, Amit Mishra, Soumen Basu, Nagaraj P. Shetti, Kakarla Raghava Reddy, Tawfik A. Saleh, and Tejraj M. Aminabhavi. 2019. “Band Gap Tuning and Surface Modification of Carbon Dots for Sustainable Environmental Remediation and Photocatalytic Hydrogen Production – A Review.” Journal of Environmental Management 250(July). doi: 10.1016/j.jenvman.2019.109486.

Mehta, Vaibhavkumar N., Sanjay Jha, Hirakendu Basu, Rakesh Kumar Singhal, and Suresh Kumar Kailasa. 2015. “One-Step Hydrothermal Approach to Fabricate Carbon Dots from Apple Juice for Imaging of Mycobacterium and Fungal Cells.” Sensors and Actuators, B: Chemical 213:434–43. doi: 10.1016/j.snb.2015.02.104.

Meng, Weixue, Xue Bai, Boyang Wang, Zhongyi Liu, Siyu Lu, and Bai Yang. 2019. “Biomass-Derived Carbon Dots and Their Applications.” Energy and Environmental Materials 2(3):172–92. doi: 10.1002/eem2.12038.

Mintz, Keenan J., Mattia Bartoli, Massimo Rovere, Yiqun Zhou, Sajini D. Hettiarachchi, Suraj Paudyal, Jiuyan Chen, Justin B. Domena, Piumi Y. Liyanage, Rachel Sampson, Durga Khadka, Raja R. Pandey, Sunxiang Huang, Charles C. Chusuei, Alberto Tagliaferro, and Roger M. Leblanc. 2021. “A Deep Investigation into the Structure of Carbon Dots.” Carbon 173:433–47. doi: 10.1016/j.carbon.2020.11.017.

Park, Minsu, Hyung Suk Kim, Hyewon Yoon, Jin Kim, Sukki Lee, Seunghyup Yoo, and Seokwoo Jeon. 2020. “Controllable Singlet–Triplet Energy Splitting of Graphene Quantum Dots through Oxidation: From Phosphorescence to TADF.” Advanced Materials 32(31):1–10. doi: 10.1002/adma.202000936.

Ryman-Rasmussen, Jessica P., Jim E. Riviere, and Nancy A. Monteiro-Riviere. 2007. “Surface Coatings Determine Cytotoxicity and Irritation Potential of Quantum Dot Nanoparticles in Epidermal Keratinocytes.” Journal of Investigative Dermatology 127(1):143–53. doi: 10.1038/sj.jid.5700508.

Tuerhong, Mhetaer, Yang XU, and Xue Bo YIN. 2017. “Review on Carbon Dots and Their Applications.” Chinese Journal of Analytical Chemistry 45(1):139–50.

Wang, Junhui, Lifeng Wang, Shuwen Yu, Tao Ding, Dongmei Xiang, and Kaifeng Wu. 2021. “Spin Blockade and Phonon Bottleneck for Hot Electron Relaxation Observed in N-Doped Colloidal Quantum Dots.” Nature Communications 12(1). doi: 10.1038/s41467-020-20835-4.

Wang, Yanli, Parambath Anilkumar, Li Cao, Jia Hui Liu, Pengju G. Luo, Kenneth N. Tackett, Sushant Sahu, Ping Wang, Xin Wang, and Ya Ping Sun. 2011. “Carbon Dots of Different Composition and Surface Functionalization: Cytotoxicity Issues Relevant to Fluorescence Cell Imaging.” Experimental Biology and Medicine 236(11):1231–38. doi: 10.1258/ebm.2011.011132.

Xia, Chunlei, Shoujun Zhu, Tanglue Feng, Mingxi Yang, and Bai Yang. 2019. “Evolution and Synthesis of Carbon Dots: From Carbon Dots to Carbonized Polymer Dots.” Advanced Science 6(23). doi: 10.1002/advs.201901316.

Xue, Mingyue, Zhihua Zhan, Mengbing Zou, Liangliang Zhang, and Shulin Zhao. 2016. “Green Synthesis of Stable and Biocompatible Fluorescent Carbon Dots from Peanut Shells for Multicolor Living Cell Imaging.” New Journal of Chemistry 40(2):1698–1703. doi: 10.1039/c5nj02181b.

Yoo, Hyo Jeong, Byeong Eun Kwak, and Do Hyun Kim. 2021. “Competition of the Roles of π-Conjugated Domain between Emission Center and Quenching Origin in the Photoluminescence of Carbon Dots Depending on the Interparticle Separation.” Carbon 183:560–70. doi: 10.1016/j.carbon.2021.07.054.

Zamora-Valencia, C. A., Ma. I. Reyes-Valderrama, A. J. Herrera-Carbajal, E. Salinas-Rodriguez, and V. Rodriguez-Lugo. 2019. “Evaluación de La Luminiscencia de Puntos Cuánticos de Carbono Sintetizados Mediante El Método Hidrotermal a Partir de Triticum.” 7:19–22.

Zhao, Wei, Chulho Song, and Pehr E. Pehrsson. 2002. “Water-Soluble and Optically PH-Sensitive Single-Walled Carbon Nanotubes from Surface Modification.” Journal of the American Chemical Society 124(42):12418–19. doi: 10.1021/ja027861n.

Publicado
2023-12-15
Cómo citar
Zamora-Valencia, C. A., Reyes-Valderrama, M. I., Salado-Lesa, D. E., & Rodriguez-Lugo, V. (2023). Síntesis hidrotermal de puntos cuánticos de carbono PEGilados. Pädi Boletín Científico De Ciencias Básicas E Ingenierías Del ICBI, 11(Especial5), 35-43. https://doi.org/10.29057/icbi.v11iEspecial5.11840

Artículos más leídos del mismo autor/a

1 2 3 > >>