Fermentación alcohólica de guayaba (Psidium guajava L.) por Kluyveromyces marxianus

Palabras clave: Etanol, Fruta tropical, Levaduras no-Saccharomyces

Resumen

La guayaba (Psidium guajava L.) es una fruta tropical con una elevada producción mundial; sin embargo, es altamente perecedera. Previamente se ha reportado su fermentación alcohólica con levaduras de la especie Saccharomyces cerevisiae, sin existir antecedentes con levaduras de otras especies como Kluyveromyces marxianus. En este trabajo se llevo a cabo la fermentación alcohólica de guayaba utilizando la levadura K. marxianus UMPe-1, comparando los resultados con los obtenidos de la levadura S. cerevisiae Ethanol Red®. En el producto de la fermentación con la levadura UMPe-1, se registraron 4.30 g/100 mL de etanol, 0.08 g/100 mL de metanol, y 0.26 g/100 mL de azúcares residuales; mientras que en el producto de la fermentación con la levadura Ethanol Red® se detectaron 0.44 g/100 mL de etanol, 0.06 g/100 mL de metanol y 6.5 g/100 mL de azúcares residuales. Para nuestro conocimiento, este es el primer trabajo en el que se lleva a cabo la fermentación alcohólica de guayaba utilizando una cepa K. marxianus, en el cual se demuestra una mayor eficiencia fermentativa respecto a S. cerevisiae.

Descargas

La descarga de datos todavía no está disponible.

Biografía del autor/a

Cynthia Isabel Santiago-Barajas, Instituto Tecnológico de Morelia

 

 

Citas

Amaya-Delgado, L., Herrera-Lopez, E. J., Arrizon, J., Arellano-Plaza, M., Gschaedler, A., (2013). Performance evaluation of Pichia kluyveri, Kluyveromyces marxianus and Saccharomyces cerevisiae in industrial tequila fermentation. World Journal of Microbiology and Biotechnology. 29: 875–881.

Anagnostopoulos, D., Bozoudi, D., Tsaltas, D., (2017). Yeast Ecology of Fermented Table Olives: A Tool for Biotechnological Applications. InTech. DOI: 10.5772/intechopen.70760

Bello, G. D., Carrera, B. E., Díaz, M. Y., (2006). Determinación de azúcares reductores totales en jugos mezclados de caña de azúcar utilizando el método del ácido 3,5 dinitrosalicílico. ICIDCA. Sobre los Derivados de la Caña de Azúcar. 2:45-50.

Berthels, N. J., Cordero, O. R., Bauer, F. F., Thevelein, J., Pretorius, I., (2004). Discrepancy in glucose and fructose utilisation during fermentation by wine yeast strains. FEMS Yeast Research. 4(7): 683–689. DOI: 10.1016/j.femsyr.2004.02.005

Berthels, N. J., Cordero, O. R., Bauer, F. F., Pretorius, I. S., Thevelein, J., (2008). Correlation between glucose/fructose discrepancy and hexokinase kinetic properties in different Saccharomyces cerevisiae wine yeast strains. Applied Microbiology and Biotechnology. 77(5): 1083-1091. DOI: 10.1007/s00253-007-1231-2

Benito, Á., Calderón, F., Benito, S., (2019). The influence of non-Saccharomyces species on wine fermentation quality parameters. Fermentation. 5(3): 54-72. DOI: 10.3390/fermentation5030054

Bertagnolli, S., Bernardi, G., Donadel, J., Fogaça, A., Wagner, R., Penna, N., (2017). Natural sparkling guava wine: Volatile and physicochemical characterization. Ciência Rural. 47: 1-7. DOI:10.1590/0103-8478cr20151509

Bhat, R., Suryanarayana, L. C., Chandrashekara, K. A., Krishnan, P., Kush, A., Ravikumar, P., (2015). Lactobacillus plantarum mediated fermentation of Psidium guajava L. fruit extract. Journal of Bioscience and Bioengineering. 119: 430–432. DOI: 10.1016/j.jbiosc.2014.09.007

Bilal, M., Ji, L., Xu, Y., Xu, S., Lin, Y., Iqbal, H. M. N., Cheng, H., (2022). Bioprospecting Kluyveromyces marxianus as a Robust Host for Industrial Biotechnology. Frontiers in bioengineering and biotechnology. 10: 1-18. DOI: 10.3389/fbioe.2022.851768

Blateyron, L., Sablayrolles, J. M., (2001). Stuck and slow fermentations in enology: statistical study of causes and effectiveness of combined additions of oxygen and diammonium phosphate. Journal of Bioscience and Bioengineering. 91(2): 184–189. DOI: 10.1016/s1389-1723(01)80063-3

Botelho, G., Anjos, O., Estevinho, L. M., Caldeira, I., (2020). Methanol in grape derived, fruit and honey spirits: A critical review on source, quality control, and legal limits. Processes. 8: 1-21. DOI: 10.3390/pr8121609.

Campos-García, J., Sosa, C., Reyes de la Cruz, H., López-Alvarez, A., (2009). Levadura fermentadora para la elaboración de bebidas alcohólicas (Tequila, mezcal, vino, ron, charanda y otros destilados). Patente: MX/a/2007/014445, No. 271316.

Carvalho, P., Costa, C. E., Baptista, S. L., Domingues, L., (2021). Yeast cell factories for sustainable whey-to-ethanol valorisation towards a circular economy. Biofuel Research Journal. 32: 1529-1549. DOI: 10.18331/BRJ2021.8.4.4

Fonseca, G. G., de Carvalho, N. M. B., Gombert, A. K., (2013). Growth of the yeast Kluyveromyces marxianus CBS 6556 on different sugar combinations as sole carbon and energy source. Applied Microbiology and Biotechnology. 97: 5055–5067. DOI: 10.1007/s00253-013-4748-6

Gamero, A., Quintilla, R., Groenewald, M., Alkema, W., Boekhout, T., Hazelwood, L., (2016). High-throughput screening of a large collection of non-conventional yeasts reveals their potential for aroma formation in food fermentation. Food Microbiology. 60: 147–159. DOI: 10.1016/j.fm.2016.07.006

González-Arias, S., Zúñiga-Moreno, A., García-Morales, R., Elizalde-Solis, O. V., Sánchez, F. J., Flores-Valle, S. O., (2021). Gasifification of Psidium guajava L. Waste using supercritical water: evaluation of feed ratio and moderate temperatures. Energies. 14(9): 1-17. DOI: 10.3390/en14092555

Graciano-Fonseca, G., Heinzle, E., Wittmann, C., Gombert, A. K., (2008). The yeast Kluyveromyces marxianus and its biotechnological potential. Applied Microbiology and Biotechnology. 79: 339–354.

Guillaume, C., Delobel, P., Sablayrolles, J. M., Blondin, B., (2007). Molecular basis of fructose utilization by the wine yeast Saccharomyces cerevisiae: a mutated HXT3 allele enhances fructose fermentation. Applied and Environmental Microbiology. 73(8): 2432-2439. DOI: 10.1128/AEM.02269-06

Gutierrez-Montiel, D., Guerrero-Barrera, A. L., Chávez-Vela, N. A., Avelar-Gonzalez, F. J., Ornelas-García, I. G., (2023). Psidium guajava L.: From byproduct and use in traditional Mexican medicine to antimicrobial agent. Frontiers in Nutrition. DOI: 10:1108306. 10.3389/fnut.2023.1108306

Karim, A., Gerliani, N., AÃder, M., (2020). Kluyveromyces marxianus: An emerging yeast cell factory for applications in food and biotechnology. International Journal of Food Microbiology. 333(6): 108818. DOI: 10.1016/j.ijfoodmicro.2020.108818

Kocher, G. S., Pooja., (2011). Status of wine production from guava (Psidium guajava L.): A traditional fruit of India. African Journal of Food Science. 5 (16): 851-860. DOI: 10.5897/AJFSX11.008

Lane, M. M. Morrissey, J. P., (2010). Kluyveromyces marxianus: a yeast emerging from its sister’s shadow, Fungal Biology Reviews. 24: 17–26. DOI: 10.1016/j. fbr.2010.01.001

Lara-Hidalgo, C., Grajales-Lagunes, A., Ruiz-Cabrera, M. A., Ventura-Canseco, C., Gutierrez-Miceli, F. A., Ruiz-Valdiviezo, V. M., Abud A. M., (2017). Agave americana honey fermentation by Kluyveromyces marxianus strain for “Comiteco” production, a spirit from mexican southeast. Revista Mexicana de Ingeniería Química. 16(3): 771-779.

Leonel, L., Arruda, P., Chandel, A., Felipe, M., Sene, L., (2021). Critical Reviews in Biotechnology Kluyveromyces marxianus: a potential biocatalyst of renewable chemicals and lignocellulosic ethanol production. Critical Reviews in Biotechnology. 41. DOI: 10.1080/07388551.2021.1917505

López-Alvarez, A., Díaz-Perez, A. L., Sosa-Aguirre, C., Macías-Rodríguez, L., Campos-García, J., (2012). Ethanol yield and volatile compound content in fermentation of agave must by Kluyveromyces marxianus UMPe-1 comparing with Saccharomyces cerevisiae baker’s yeast used in tequila production. Journal of Bioscience and Bioengineering. 113: 614–618. DOI: 10.1016/j.jbiosc.2011.12.015

Mehmood, N., Alayoubi, R., Husson, E., Jacquard, C., Büchs, J., Sarazin, C., Gosselin, I., (2018). Kluyveromyces marxianus, an Attractive Yeast for Ethanolic Fermentation in the Presence of Imidazolium Ionic Liquids. International Journal of Molecular Sciences. 19(3): 887-902. DOI: 10.3390/ijms19030887

Mendonca, A. R., Geocze, C. A., Maria, S. C., Souza, O. E., (2011). Potential application of Saccharomyces cerevisiae strains for the fermentation of banana pulp. African Journal of Biotechnology. 10(18): 3608–3615.

Mo, W., Wang, M., Zhan, R., Yu, Y., He, Y., Lu, H., (2019). Kluyveromyces marxianus developing ethanol tolerance during adaptive evolution with significant improvements of multiple pathways. Biotechnology for Biofuels 12(1): 63-78. DOI: 10.1186/s13068-019-1393-z

Morata, A., Escott, C., Banuelos, M. A., Loira, I., Fresno, J. M. D., Gonzalez, C., Suarez-Lepe, J. A., (2019). Contribution of non-Saccharomyces yeasts to wine freshness. A review. Biomolecules, 10(1): 34-60. DOI: 10.3390/biom10010034

Moreno, M., Zampini, C., Costamagna, M., Sayago, J., Ordoñez, R., Isla, M., (2014). Phytochemical Composition and Antioxidant Capacity of Psidium guajava Fresh Fruits and Flour. Food and Nutrition Sciences. 5: 725-732. DOI: 10.4236/fns.2014.58082

Minh, N. P., Pham, V. T., Tre, T. T., Kieu, T. T., Nhu, N. T., Thi, T., Van, C., (2019). Different factors affecting Guava (Psidium guajava) wine fermentation. Journal of Pharmaceutical Sciences and Research. 11(4): 1458-1463.

Nikhanj, P., Kocher, G., Boora, R., (2017). Fermentative production of guava wine from pectinase treated and untreated juice of ‘punjab pink’ cultivar of Psidium guajava L. Agricultural Research Journal. 54: 244. DOI: 10.5958/2395-146X.2017.00044.8.

Nini, Z., Feier, W., Marknoah, C., Nwamba, D., Wang, J. H., (2023). Enhancing tolerance of Kluyveromyces marxianus to lignocellulose-derived inhibitors and its ethanol production from corn cob via overexpression of a nitroreductase gene. Industrial Crops and Products. 117-136. DOI: 10.1016/j.indcrop.2023.117136.

Nurcholis, M., Lertwattanasakul, N., Rodrussamee, N., Kosaka, T., Murata, M.,Yamada, M., (2020). Integration of comprehensive data and biotechnological tools for industrial applications of Kluyveromyces marxianus. Applied Microbiology and Biotechnology. 104: 475–488. DOI: 10.1007/s00253-019-10224-3

Ortiz, Á., Reuto, J., Fajardo, E., Sarmiento, S., Aguirre, A., Arbeláez, G., Gómez, D., Quevedo-Hidalgo, B., (2008). Evaluación de la capacidad probiótica "in vitro" de una cepa nativa de Saccharomyces cerevisiae. Universitas Scientiarum. 13(2): 138-148.

Palachum, W., Choorit, W., Manurakchinakorn, S., Chisti, Y., (2020). Guava pulp fermentation and processing to a vitamin B12‐enriched product. Journal of Food Processing and Preservation. 44(8): 1-15. DOI: 10.1111/jfpp.14566

Rai, P., Majumdar, G. C., Dasgupta, S. De, S., (2004). Optimizing pectinase usage in pretreatment of mosambi juice for clarification by response surface methodology. Journal of Food Engineering. 64: 397-403. DOI: 10.1016/j.jfoodeng.2003.11.008

SAGARPA. (2017). Aumenta 8.2 por ciento producción de guayaba en México en el ultimo trienio. Accesado: julio 2023 [En linea]. Disponible en:http://www.sagarpa.gob.mx/Delegaciones/nayarit/boletines/Paginas/BNSAGENE072017.aspx#.

Santos, D. S., Rezende, R. P., Santos, T. F., Marques, E. L. S., Ferreira, A. C. R., Silva, A. B. C., (2020). Fermentation in fine cocoa type Scavina: change in standard quality as the effect of use of starters yeast in fermentation. Food Chemistry. 328: 7–12. DOI: 10.1016/j.foodchem.2020.127110

Sevda, S. B., Rodrigues, L., (2011). Fermentative behavior of saccharomyces strains during guava (Psidium guajava L) must fermentation and op-timization of guava-wine production. Journal of Food Processing & Technology. 2: 118-27. DOI: 10.4172/2157- 7110.1000118

Shadbahr, J., Khan, F., Zhang, Y., (2017). Kinetic modeling and dynamic analysis of simultaneous saccharification and fermentation of cellulose to bioethanol. Energy Conversion and Management. 141: 236-243.

Shankar, S., Dilip, J., Narayana, R. Y., (2006). Fermentation of guava pulp with grape grown yeast (S.cerevisae var. ellipsoideus) for wine production. Indian Journal of Horticulture. 63: 171-173.

Singh, E., Puyo, A., (2014). Wine production process from guava (Psidium guajava L.). International Journal of Enology and Viticulture. 1(8): 89-97.

Tesfaw, A., Toksoy, O., Ebru, Assefa, F., (2021). Evaluating crude whey for bioethanol production using non-Saccharomyces yeast, Kluyveromyces marxianus. SN Applied Sciences. 3: 42-50. DOI: 10.1007/s42452-020-03996-1

Tronchoni, J., A. Gamero, F. N. A. Lopez, E. Barrio, A. Querol., (2009). Differences in the glucose and fructose consumption profiles in diverse Saccharomyces wine species and their hybrids during grape juice fermentation. International journal of food microbiology. 134: 237-243. DOI: 10.1016/j.ijfoodmicro.2009.07.004

Varela, C., (2016). The impact of non-Saccharomyces yeasts in the production of alcoholic beverages. Applied Microbiology and Biotechnology. 100(23): 9861– 9874. DOI: 10.1007/s00253-016-7941-6

Younis, K., Siddiqui, S., Jahan, K., Dar, M. S., (2014). Production of wine from over ripe guava (Psidium guajava L Cv. Safada) and ber (Ziziphus mauritiana L Cv. Umran) fruits using Saccharomyces crevices Var. HAU 1. IOSR Journal of Environmental Science, Toxicology and Food Technology. 8: 93-96. DOI: 10.9790/2402-08149396

Publicado
2024-03-04
Cómo citar
Sosa-Aguirre, C. R., Campos-García, J., Mejia-Barajas, J. A., García-Hernández, D., & Santiago-Barajas, C. I. (2024). Fermentación alcohólica de guayaba (Psidium guajava L.) por Kluyveromyces marxianus. Pädi Boletín Científico De Ciencias Básicas E Ingenierías Del ICBI, 12(23). Recuperado a partir de https://repository.uaeh.edu.mx/revistas/index.php/icbi/article/view/12017
Tipo de manuscrito
Artículos de investigación

Artículos más leídos del mismo autor/a