Reacciones de activación C-H para preparar 2,5-di(hetero)aril furanos

Palabras clave: activación C-H, furano, Indol, fluorescence

Resumen

En este estudio se llevó a cabo la síntesis de furanos 2,5-di(hetero)aril sustituidos mediante la doble activación C-H de furano con acetato de paladio, empleando halogenuros de (hetero)arilo y se obtuvieron rendimientos aceptables. La sustitución del furano con grupos arilo que contienen grupos electro atractores proporciona moléculas fluorescentes de bajo peso molecular con posible aplicación optoelectrónica. En cambio, la doble sustitución del furano con anillos de indol que funcionan como grupos electro donadores proporciona compuestos que prácticamente no exhiben fluorescencia.

Descargas

La descarga de datos todavía no está disponible.

Citas

Arroniz, A., Chaubet, G., Anderson, E. A. (2018) Dual oxidation state tandem catalysis in the palladium-catalyzed isomerization of alkynyl epoxides to furans. ACS Catalysis. 8, 8290-8295

Cao, H., Rupar, P. A. (2017). Recent advances in conjugated furans. Chemistry European Journal, 23, 14670-14675. DOI: 10.1002/chem.201703355

Chacón-Huete, F., Mangel, D., Ali, M., Sudano, A., Forgione, P. (2017) High-value biomass-derived 2,5-furandicarboxylic acid derivatives obtained by a double decarboxylative cross-coupling. ACS Sustainable Chemistry and Engineering, 5, 7071-7076. DOI: 10.1021/acssuschemeng.7b01277

Chen, L., Roger, J., Bruneau, C., Dixneuf, P. H., Doucet, H. (2011). Phosphine‐Free Palladium Catalytic System for the Selective Direct Arylation of Furans or Thiophenes bearing Alkenes and Inhibition of Heck‐Type Reaction. Advanced Synthesis and Catalysis, 353, 2749-2760. DOI: 10.1002/adsc.201100193.

Donlic, A., Zafferani, M., Malakiva, P., Hargrove A. E. (2020) Regulation of MALAT1 triple helix stability and in vitro degradation by diphenylfurans. Nucleic Acids Research, 48, 7653–7664. DOI: 10.1093/nar/gkaa585

Forrest, S. R., (2020). Organic Electronics. Foundations to applications. Oxford University Press, New York. DOI: 10.1093/oso/9780198529729.001.0001

Häfner, M., Sokolenko, Y. M., Gamerdinger, P., Stempel, E., Gaich, T. (2019). Enantioselective Synthesis of Cyclohepta [b] indoles via Pd-Catalyzed Cyclopropane C (sp3)–H Activation as a Key Step. Organic Letters, 21, 7370-7374. DOI: 10.1021/acs.orglett.9b02687.

Hu, Y., Ke, Q., Yan. C., Xu, C-H., Huang, X-H., Hu, S-L. (2016). A new fluorescence chemosensor for selective detection of copper ion in aqueous solution. Tetrahedron Letters, 57,2239-2243. DOI: 10.1016/j.tetlet.2016.04.025

Hu, X., Zhou, B., Jin, H., Liu, Y., Zhang , L. (2020) Bifunctional phosphine ligand-enabled gold-catalyzed direct cycloisomerization of alkynyl ketones to 2,5-disubstituted furans. Chemical Communications. 56, 5297-52300. DOI: 10.1039/D0CC01238F

Jiang, H., Zeng, W., Li, Y., Wu, W., Huang, L., Fu, W. (2012) Copper(I)-Catalyzed Synthesis of 2,5-Disubstituted Furans and Thiophenes from Haloalkynes or 1,3-Diynes. Journal of Organic Chemistry. 77, 5179-5183. DOI:10.1021/jo300692d

Kazantsev, M. S., Frantseva, E. S., Kudriashova, L. G., Konstantinov, V. G., Mannnanov, A. A., Rybalova, T. V., Karpova, E. V., Shundrina, I. K., Kamaev, G. N., Pshenichnikov, M. D., Mostovich, E. A., Paraschu, D. Y. (2016) Highly-emissive solution-grown furan/phenylene co-oligomer single crystals. RSC Advances, 6, 92325-92329. DOI: 10.1039/C6RA23160H

Klukas, F., Grunwald, A., Menschel, F., Müller, T. J. J. (2014) Rapid pseudo five-component synthesis of intensively blue luminescent 2,5-di(hetero)arylfurans via a Sonogashira–Glaser cyclization sequence Beilstein Journal of Organic Chemistry, 10, 672-679. DOI: 10.3762/bjoc.10.60

Kumar, A., Stephens, C. E., Boykin, D. W. (1999) Palladium catalyzed cross-coupling reactions for the synthesis of 2,5-disubstituted furans. Heterocyclic Communications, 5, 301-304. DOI: 10.1515/HC.1999.5.4.301

Mulay, S. V., Bogoslavky, B., Galanti, I. Glunc, E. Gidron, O. (2018) Bifuran-imide: A stable furan building unit for organic electronics. Journal Materials Chemistry C. DOI: 11951-11955. 10.1039/C8TC02908C

Petit, A., Flygare, J., Miller, A. T., Winkel, G. Ess, D. H. (2012) Transition-State Metal Aryl Bond Stability Determines Regioselectivity in Palladium Acetate Mediated C–H Bond Activation of Heteroarenes. Organic Letters, 14, 3680-3683. DOI: 10.1021/ol301521n

Rao., H. S. P., Jothilingam, S. (2003). Facile microwave-mediated transformations of 2-butene-1,4-diones and 2-butyne-1,4-diones to furan derivatives. Journal of Organic Chemistry. 68, 5392-5394. DOI: 10.1021/jo0341766

Sheberla, D., Patra, S., Wijsboom, Y. H., Sharma, S., Sheynin, Y., Haj-Yahia, A-E., Barak, A. H., Gidron, O., Bendikov, M. (2015). Conducting polyfurans by electropolymerization of oligofurans. Chemical Science, 6, 360-371. DOI: 10.1039/c4sc02664k

Zhao, Z., Nie. H., Ge, C., Cai. Y., Xiong, Y., Qi, J., Wu, W., Kwok, R. T. K., Gao, X., Qin, A., Lam, J. W. Y., Tang, B. Z. (2017) Furan is superior to thiophene: A furan-cored AIEgen with remarkable chromism and OLED performance. Advanced Science, 4, 1700005. DOI: 10.1002/advs.201700005

Zheng, Q., Hua, R., Jiang, J., Zhang, L. (2014). A general approach to arylated furans, pyrroles, and thiophenes. Tetrahedron, 70, 8252-8256. DOI: 10.1016/j.tet.2014.09.025

Publicado
2024-03-04
Cómo citar
Castro-Castro, D., Mendoza-Espinosa, D., & Alvarez, A. (2024). Reacciones de activación C-H para preparar 2,5-di(hetero)aril furanos. Pädi Boletín Científico De Ciencias Básicas E Ingenierías Del ICBI, 12(23). Recuperado a partir de https://repository.uaeh.edu.mx/revistas/index.php/icbi/article/view/12025
Tipo de manuscrito
Artículos de investigación