Análisis de fases zeolíticas del sistema Na2O-Al2O3-SiO2-H2O obtenidas por hidrólisis alcalina isotérmica de caolín

Palabras clave: hidroxicancrinita, hidroxisodalita, difracción de rayos-X con muestra policristalina, zeolita NaP 1, analcima

Resumen

Bajo la premisa de que la permineralización inducida por sílice durante la formación de fósiles silicatados comporta la estabilización de fases intermedias de estructura zeolítica, planteamos la reproducción de este proceso natural mediante la síntesis de materiales zeolíticos en un sistema reactivo hidrotermal isotérmico (140 ºC), con NaOH, a partir de caolín como fuente de aluminosilicato. El resultado es la obtención de diversas mezclas de las fases hidroxicancrinita, hidroxisodalita, zeolita tipo NaP 1 y analcima, en un rango de tiempo de reacción que va de 7 a 9 horas. El análisis de estas mezclas se ha llevado a cabo mediante difracción de Rayos-X en muestra polvo y representa una guía útil para identificar mezclas complejas de estructuras zeolíticas sódicas, reportando tablas (hkl)/dhkl para cada una de las fases. El estudio incorpora dos hallazgos inéditos: i) la transición de fase de hidroxisodalita a hidroxicancrinita se muestra por primera vez en condiciones isotérmicas sin carbonatos, y ii) la elucidación del grupo de simetría espacial para la hidroxisodalita da como resultado el grupo cúbico quiral P4332 (o P4132).

Descargas

La descarga de datos todavía no está disponible.

Citas

Abubakar, A., Yahaya, N. P., & Lamayi, W. D. (2023). Synthesis and Characterization of Zeolite A from Alkaleri Kaolin using Conventional Hydro Thermal Synthesis Technique. Nanochemistry Research, 8(3), 190-196. https://doi.org/10.22036/NCR.2023.03.004

Albert, B.R., Cheetham, A.K., Stuart, J.A., & Adams, C.J. (1998). Investigations on P zeolites: synthesis, characterization, and structure of highly crystalline low-silica NaP. Microporous and Mesoporous Materials, 21(1-3), 133-142. https://doi.org/10.1016/S1387-1811(97)00059-0

Alberti A., & Vezzalini G. (1979). The crystal structure of amicite, a zeolite. Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry, 35(12), 2866-2869. https://doi.org/10.1107/S0567740879010852

Artioli, G., & Foy, H. (1994). Gobbinsite from Magheramorne quarry, Northern Ireland. Mineralogical Magazine, 58, 615-620. https://doi.org/10.1180/minmag.1994.058.393.10

Artioli, G. (1992). The crystal structure of garronite. American Mineralogist, 77(1-2), 189-196.

Baerlocher, C. & McCusker, L.B. (s.f.). Database of Zeolite Structures: http://www.iza-structure.org/databases/

Baerlocher, C., & Meier, W. M. (1972). The crystal structure of synthetic zeolite Na-P 1, an isotype of gismondine. Zeitschrift für Kristallographie-Crystalline Materials, 135(1-6), 339-354. https://doi.org/10.1524/zkri.1972.135.16.339

Baerlocher, C., McCusker, L. B., & Olson, D. H. (2007). Atlas of zeolite framework types (6a edición). Elsevier.

Ballirano, P. (2018). The thermal behaviour of sacrofanite. European Journal of Mineralogy, 30(3), 507-514.

https://doi.org/10.1127/ejm/2018/0030-2733

Bertolini, T. C., Izidoro, J. C., Magdalena, C. P., & Fungaro, D. A. (2013). Adsorption of crystal violet dye from aqueous solution onto zeolites from coal fly and bottom ashes. Orbital: The Electronic Journal of Chemistry, 5(3), 179-191. https://doi.org/10.17807/orbital.v5i3.488

Boultif, A., & Louër, D. (1991). Indexing of powder diffraction patterns for low-symmetry lattices by the successive dichotomy method. Journal of Applied Crystallography, 24(6), 987-993. https://doi.org/10.1107/S0021889891006441

Cardoso, A. M., Horn, M. B., Ferret, L. S., Azevedo, C. M., & Pires, M. (2015). Integrated synthesis of zeolites 4A and Na–P1 using coal fly ash for application in the formulation of detergents and swine wastewater treatment. Journal of Hazardous Materials, 287, 69-77. https://doi.org/10.1016/j.jhazmat.2015.01.042

Chauviré, B., Houadria, M., Donini, A., Berger, B. T., Rondeau, B., Kritsky, G., & Lhuissier, P. (2020). Arthropod entombment in weathering-formed opal: new horizons for recording life in rocks. Scientific Reports, 10(1), 10575. https://doi.org/10.1038/s41598-020-67412-9

Cordeiro, P. H., Enzweiler, H., Visioli, L. J., Zandonai, C. H., Pimenta, J. L. C. W., & Subtil, G. W. (2020). Design and Applications in Catalytic Processes of Zeolites Synthesized by the Hydrothermal Method. En F. La Porta & C. Taft, (Eds.), Emerging Research in Science and Engineering Based on Advanced Experimental and Computational Strategies. Engineering Materials (pp. 359-389). Springer, Cham. https://doi.org/10.1007/978-3-030-31403-3_14

Cruciani, G., Gualtieri, A. (1999). Dehydration dynamics of analcime by in situ synchrotron powder diffraction. American Mineralogist, 84, 112-119. https://doi.org/10.2138/am-1999-1-212

De Wolff, P. D. (1968). A simplified criterion for the reliability of a powder pattern indexing. Journal of Applied Crystallography, 1(2), 108-113. https://doi.org/10.1107/S002188986800508X

Felsche, J., & Luger, S. (1986). Structural Collapse or Expansion of the Hydro‐Sodalite Series Na8[AlSiO4]6(OH)2·nH2O and Na6[AlSiO4]6· nH2O Upon Dehydratation. Berichte der Bunsengesellschaft für physikalische Chemie, 90(8), 731-736. https://doi.org/10.1002/bbpc.19860900822

Felsche, J., Luger, S., & Baerlocher, C. (1986). Crystal structures of the hydro-sodalite Na6[AlSiO4]6·8H2O and of the anhydrous sodalite Na6 [AlSiO4]6. Zeolites, 6(5), 367-372. https://doi.org/10.1016/0144-2449(86)90064-3

Fischer, K.F. (1963). The crystal structure determination of the zeolite gismondite. CaAl2Si2O8·4H2O. American Mineralogist: Journal of Earth and Planetary Materials. 48(5-6), 664-672.

Gaines, R.V., Skinner, H.C., Foord, E.E., Mason, B., & Rosenzweig, A. (1997). Dana's New Mineralogy. (8a ed.). John Wiley & Sons.

Gatta, G. D., Nestola, F., & Ballaran, T. B. (2006). Elastic behavior, phase transition, and pressure induced structural evolution of analcime. American Mineralogist, 91, 568-578. https://doi.org/10.2138/am.2006.1994

Goryainov, S.V., Krylov, A.S., Likhacheva, A.Y., Borodina, U.O., & Vtyurin, A.N. (2021). Raman Study of Hydro-Cancrinite Compressed in an Aqueous Medium at High Pressures and Temperatures. Bulletin of the. Russian Academy of Science: Physics, 85, 962–964. https://doi.org/10.3103/S1062873821090112

Häkansson, U., Fälth, L., & Hansen, S. (1990). Structure of high-silica variety of zeolite Na-P. Acta Crystallographica Section C: Crystal Structure Communications, 46(8), 1363-1364. https://doi.org/10.1107/S0108270189013260

Hansen, S., Häkansson, U., & Fälth, L. (1990). Structure of synthetic zeolite Na-P2. Acta Crystallographica Section C: Crystal Structure Communications, 46(8), 1361-1362. https://doi.org/10.1107/S010827018901262X

Hassan, I., & Grundy, H. D. (1983). Structure of basic sodalite, Na8Al6Si6O24 (OH)2·2H2O. Acta Crystallographica Section C: Crystal Structure Communications, 39(1), 3-5. https://doi.org/10.1107/S0108270183003406

Hassan, I., & Grundy, H.D. (1991). The crystal structure of basic cancrinite, ideally Na8[Al6Si6O24](OH)2·3H2O. Canadian Mineralogist, 29, 377-383.

Hassan, I., Antao, S. M., Parise, J. B. (2006). Cancrinite: crystal structure, phase transitions, and dehydration behavior with temperature. American Mineralogist, 91(7), 1117-1124. https://doi.org/10.2138/am.2006.2013

Koshlak, H. (2023). Synthesis of Zeolites from Coal Fly Ash Using Alkaline Fusion and Its Applications in Removing Heavy Metals. Materials, 16(13), 4837. https://doi.org/10.3390/ma16134837

Ishihara, A., & Ohfuji, H. (2023). Mineralogical study on zeolites in gastropod fossils in Miocene sediments in Minamisoma, Fukushima, Japan. Journal of Mineralogical and Petrological Sciences, 118(1), 230327. https://doi.org/10.2465/jmps.230327

Irannajad, M., & Kamran Haghighi, H. (2021). Removal of heavy metals from polluted solutions by zeolitic adsorbents: a review. Environmental Processes, 8, 7-35. https://doi.org/10.1007/s40710-020-00476-x

Izidoro, J. D. C., Fungaro, D. A., dos Santos, F. S., & Wang, S. (2012). Characteristics of Brazilian coal fly ashes and their synthesized zeolites. Fuel Processing Technology, 97, 38-44. https://doi.org/10.1016/j.fuproc.2012.01.009

Jha, V. K., Kameshima, Y., & Okada, K. (2003). Phase Formation from Calcium Aluminosilicate Gels by Soft Hydrothermal Treatment. Transactions of the Materials Research Society of Japan, 28(2), 397-400.

Li, J., Xu, L., Sun, P., Zhai, P., Chen, X., Zhang, H., Zhang, Z., & Zhu, W. (2017). Novel application of red mud: Facile hydrothermal-thermal conversion synthesis of hierarchical porous AlOOH and Al2O3 microspheres as adsorbents for dye removal. Chemical Engineering Journal, 321, 622-634. https://doi.org/10.1016/j.cej.2017.03.135

Li, Y., Li, L., & Yu, J. (2017). Applications of zeolites in sustainable chemistry. Chem, 3(6), 928-949.

https://doi.org/10.1016/j.chempr.2017.10.009

Liu, Q., Xu, H., & Navrotsky, A. (2005). Nitrate cancrinite: Synthesis, characterization, and determination of the enthalpy of formation. Microporous and mesoporous materials, 87(2), 146-152. https://doi.org/10.1016/j.micromeso.2005.08.008

Luger, S., Felsche, J., & Fischer, P. (1987). Structure of hydroxysodalite Na8[AlSiO4]6(OH)2, a powder neutron diffraction study at 8 K. Acta Crystallographica Section C: Crystal Structure Communications, 43(1), 1-3. https://doi.org/10.1107/S0108270187097233

Mainganye, D., Ojumu, T. V., & Petrik, L. (2013). Synthesis of zeolites Na-P1 from South African coal fly ash: effect of impeller design and agitation. Materials, 6(5), 2074-2089. https://doi.org/10.3390/ma6052074

Martínez, C., & Corma, A. (2011). Inorganic molecular sieves: Preparation, modification and industrial application in catalytic processes. Coordination Chemistry Reviews, 255(13-14), 1558-1580. https://doi.org/10.1016/j.ccr.2011.03.014

Mazzi, F., & Galli, E. (1978). Is each analcime different? American Mineralogist, 63(56), 448460.

Moshoeshoe, M., Nadiye-Tabbiruka, M. S., & Obuseng, V. (2017). A review of the chemistry, structure, properties and applications of zeolites. American Journal of Materials Science, 7(5), 196-221. https://doi.org/10.5923/j.materials.20170705.12

Pechar, F. (1988). The crystal structure of natural monoclinic analcime (NaAlSi2O6·H2O). Zeitschrift für Kristallographie, 184, 63-69. https://doi.org/10.1524/zkri.1988.184.14.63

Pereira, P., Breno, N., Nassar, E., Ciuffi, K., Vicente, M.A., Trujillano, R., Rives, V., Gil, A., Korili, S., & De Faria, E. (2018). Synthesis of Zeolite A from Metakaolin and Its Application in the Adsorption of Cationic Dyes. Applied Sciences, 8(4), 608. https://doi.org/10.3390/app8040608

Pérez-Botella, E., Valencia, S., & Rey, F. (2022). Zeolites in adsorption processes: State of the art and future prospects. Chemical Reviews, 122(24), 17647-17695. https://doi.org/10.1021/acs.chemrev.2c00140

Rios, C. A., Williams, C. D., & Roberts, C. L. (2008). Removal of heavy metals from acid mine drainage (AMD) using coal fly ash, natural clinker and synthetic zeolites. Journal of Hazardous Materials, 156(1-3), 23-35.

https://doi.org/10.1016/j.jhazmat.2007.11.123

Sazali, N., & Harun, Z. (2022). One Shot of the Hydrothermal Route for the Synthesis of Zeolite LTA Using Kaolin. Journal of Inorganic and Organometallic Polymers and Materials, 32(9), 3508-3520. https://doi.org/10.1007/s10904-022-02369-y

Schropfer, L., & Joswig, W. (1997). Structure analyses of a partially dehydrated synthetic Ca-garronite under different T, PH20 conditions. European Journal of Mineralogy, 9(1), 53-66. https://doi.org/10.1127/ejm/9/1/0053

Shendrik, R., Kaneva, E., Radomskaya, T., Sharygin, I., & Marfin, A. (2021). Relationships between the structural, vibrational, and optical properties of microporous cancrinite. Crystals, 11(3), 280. https://doi.org/10.3390/cryst11030280

Smiljanić, D., de Gennaro, B., Izzo, F., Langella, A., Daković, A., Germinario, C., Rottinghaus, E., Spasojević, M., & Mercurio, M. (2020). Removal of emerging contaminants from water by zeolite-rich composites: A first approach aiming at diclofenac and ketoprofen. Microporous and Mesoporous Materials, 298, 110057. https://doi.org/10.1016/j.micromeso.2020.110057

Smith, G. S., & Snyder, R. L. (1979). FN: A criterion for rating powder diffraction patterns and evaluating the reliability of powder-pattern indexing. Journal of Applied Crystallography, 12(1), 60-65. https://doi.org/10.1107/S002188987901178X

Spitzer, J. (2023). Physicochemical origins of prokaryotic and eukaryotic organisms. The Journal of Physiology. https://doi.org/10.1113/JP284428

Sun, J., Bonneau, C., Cantín, Á., Corma, A., Diaz-Cabanas, M. J., Moliner, M., Zhang, D., Li, M., Zou, X. (2009). The ITQ-37 mesoporous chiral zeolite. Nature, 458(7242), 1154-1157. https://doi.org/10.1038/nature07957

Tiwari, N., Chakrabortty, S., Suar, M., Adhya, T. K., Tripathy, S. K., & Banerjee, S. (2023). Zeolites for environmental purposes. En D. A. Giannakoudakis, L. Meili & I. Anastopoulos (Eds.), Novel Materials for Environmental Remediation Applications: Adsorption and Beyond (pp. 99-119). Elsevier. https://doi.org/10.1016/B978-0-323-91894-7.00002-5

Valdivia, M. R. (2022). Síntesis hidrotermal de zeolitas a partir de ceniza volcánica mediante tratamiento alcalino y su potencial aplicación en la remoción de NH4+, Pb2+, Zn2+ y Mn2+. MateriaRio De Janeiro, 27(1), e13132. https://doi.org/10.1590/S1517-707620220001.1332

Xiao, M., Hu, X., Gong, Y., Gao, D., Zhang, P., Liu, Q., Liu, Y., & Wang, M. (2015). Solid transformation synthesis of zeolites from fly ash. RSC advances, 5(122), 100743-100749. https://doi.org/10.1039/C5RA17856H

Yokomori, Y., & Idaka, S. (1998). The crystal structure of analcime. Microporous and Mesoporous Materials, 21(4-6), 365-370. https://doi.org/10.1016/S1387-1811(98)00019-5

Wang, J., Li, M., Fu, Y., Amoo, C. C., Jiang, Y., Yang, R., Sun, X., Xing, C., & Maturura, E. (2021). An ambient pressure method for synthesizing NaY zeolite. Microporous and Mesoporous Materials, 320, 111073.

https://doi.org/10.1016/j.micromeso.2021.111073

Publicado
2024-04-05
Cómo citar
Rodríguez-Benítez, E. A., Esquivel-Macías, C., Sánchez-De Jesús, F., Bolarín-Miró, A. M., Juárez-Tapia, J. C., & Ramirez-Cardona, M. (2024). Análisis de fases zeolíticas del sistema Na2O-Al2O3-SiO2-H2O obtenidas por hidrólisis alcalina isotérmica de caolín. Pädi Boletín Científico De Ciencias Básicas E Ingenierías Del ICBI, 12(24). Recuperado a partir de https://repository.uaeh.edu.mx/revistas/index.php/icbi/article/view/12071
Tipo de manuscrito
Artículos de investigación

Artículos más leídos del mismo autor/a

1 2 3 4 > >>