Development of a MATLAB® application for the calculation and selection of NiTi wires in electromechanical actuators

Keywords: NTi, muscle wires, MATLAB, Shape memory alloy

Abstract

The development of a MATLAB® application is presented, which has the finality to simplify the process of calculation and selection of NiTi (Nickel-Titanium) wires, for their implementation as power generation elements in electromechanical actuators, in addition to approximate the thermal response for their operating conditions. The program algorithm development integrates multiple subfunctions created based on mechanical, thermal and thermoelectric modeling for NiTi wires. The effectiveness of the program in calculating the diameter, length and parameters such as the required deformation force is verified by comparing the results obtained with the values recommended by NiTi wire manufacturer.

Downloads

Download data is not yet available.

References

An, L., Huang, W. M., Fu, Y. Q., & Guo, N. Q. (2008). A note on size effect in actuating NiTi shape memory alloys by electrical current. Materials & Design, 29(7), 1432–1437. doi: 10.1016/j.matdes.2007.09.001

Barras, C. D. J., & Myers, K. A. (2000). Nitinol – Its use in vascular surgery and other applications. European Journal of Vascular and Endovascular Surgery, 19(6), 564–569. doi:10.1053/ejvs.2000.1111

Cengel, Y. A., & Ghajar, A. J. (2015). Natural Convection. In Heat and Mass Transfer (5th ed., pp. 300–520). New York, New York: McGraw-Hill.

Clithy, E. (2020). Application of shape memory alloy. Science Insights, 33(3), 167–174. doi:10.15354/si.20.re072

Dynalloy. (2023). Flexinol® Actuator Wire Technical and Design Data. https://www.dynalloy.com/

Eisakhani, A., Ma, W., Gao, J., Ci, J., & Gorbet, R. (2011). Natural Convection Heat Transfer Modelling of Shape Memory Alloy Wire. Smart Materials, Structures & NDT in Aerospace.

Fort Wayne Metals. (2023). Actuator Calculator. Actuator Calculator - Fort Wayne Metals. https://www.fwmetals.com/actuator-calculator/

Ganesh, N. J., Maniprakash, S., Chandrasekaran, L., Srinivasan, S. M., & Srinivasa, A. R. (2011). Design and development of a sun tracking mechanism using the direct SMA Actuation. Journal of Mechanical Design, 133(7). doi:10.1115/1.4004380

Gómez, A., & Restrepo, C. A. (2005). Cables musculares. Revista EIA, 3, 103–111.

Holschuh, B., & Newman, D. (2015). Two-spring model for active compression textiles with integrated NiTi coil actuators. Smart Materials and Structures, 24(3), 035011. doi:10.1088/0964-1726/24/3/035011

Huang, W. (2002). On the selection of Shape Memory Alloys for actuators. Materials & Design, 23(1), 11–19. doi:10.1016/s0261-3069(01)00039-5

Huber, J. E., Fleck, N. A., & Ashby, M. F. (1997). The selection of mechanical actuators based on performance indices. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 453(1965), 2185–2205. doi:10.1098/rspa.1997.0117

Santiago, J. (2002). Large Force Shape Memory Alloy Linear Actuator (Mastering Thesis). University of Florida, Gainesville, Florida, EE. UU.

Kurzawa, M., & Stachowiak, D. (2017). Investigation on thermo-mechanical behavior of Shape memory alloy actuator. Archives of Electrical Engineering, 66(4), 751–760. doi:10.1515/aee-2017-0057

Lai, C.M., Chu, C.Y., & Lan, C.C. (2013). A two-degrees-of-freedom miniature manipulator actuated by antagonistic shape memory alloys. Smart Materials and Structures, 22(8), 085006. doi:10.1088/0964-1726/22/8/085006

Mirvakili, S. M., & Hunter, I. W. (2017). Artificial muscles: Mechanisms, applications, and challenges. Advanced Materials, 30(6). doi:10.1002/adma.201704407

Moallem, M., & Tabrizi, V. A. (2009). Tracking control of an antagonistic shape memory alloy actuator pair. IEEE Transactions on Control Systems Technology, 17(1), 184–190. doi:10.1109/tcst.2008.922506

Mohd Jani, J., Leary, M., & Subic, A. (2016). Designing shape memory alloy linear actuators: A Review. Journal of Intelligent Material Systems and Structures, 28(13), 1699–1718. doi:10.1177/1045389x16679296

Spaggiari, A., Spinella, I., & Dragoni, E. (2011). Design equations for binary shape memory actuators under arbitrary external forces. Journal of Intelligent Material Systems and Structures, 24(6), 682–694. doi:10.1177/1045389x12444491

Sun, L., & Huang, W. M. (2009). Nature of the multistage transformation in shape memory alloys upon heating. Metal Science and Heat Treatment, 51(11–12), 573–578. doi:10.1007/s11041-010-9213-x

Published
2024-04-12
How to Cite
Jiménez-Navarrete, F., Mier-Quiroga, L. A., Maldonado-Onofre, D., & Coutiño-Moreno, E. (2024). Development of a MATLAB® application for the calculation and selection of NiTi wires in electromechanical actuators. Pädi Boletín Científico De Ciencias Básicas E Ingenierías Del ICBI, 12(Especial), 133-142. https://doi.org/10.29057/icbi.v12iEspecial.12158

Most read articles by the same author(s)