Películas delgadas de óxidos de vanadio (VxOy) obtenidas por depósito por láser pulsado
DOI:
https://doi.org/10.29057/icbi.v13iEspecial4.12548Palabras clave:
Óxidos de Vanadio, Depósito por Láser Pulsado, Películas DelgadasResumen
Se depositaron con éxito películas delgadas de óxido de vanadio sobre sustratos de vidrio mediante la técnica de depósito por láser pulsado (PLD) a partir de un blanco de vanadio de alta pureza. Las caracterizaciones estructurales y fisicoquímicas mediante espectroscopía fotoelectrónica de rayos X (XPS) y Raman confirmaron la coexistencia de pentóxido de vanadio (V₂O₅), dióxido de vanadio (VO₂), posiblemente nanotubos de óxido de vanadio y vanadato de sodio (NaVO₃). La microscopía electrónica de barrido reveló microagujas, microbarras y morfologías similares a nanotubos, mientras que la espectroscopía de reflectancia difusa UV-Vis indicó transiciones ópticas tanto directas como indirectas, con valores de banda prohibida influenciados por la coexistencia de mezclas de fases. Los espectros de fotoluminiscencia mostraron líneas de emisión atribuibles al V₂O₅. Estos resultados resaltan la versatilidad de PLD para producir películas multifuncionales de óxido de vanadio con estados de oxidación mezclados y morfología controlada, evitando precursores químicos y proporcionando una ruta sostenible hacia aplicaciones en fotocatálisis, ventanas inteligentes, celdas solares y dispositivos optoelectrónicos.
Descargas
Información de Publicación
Perfiles de revisores N/D
Declaraciones del autor
Indexado en
- Sociedad académica
- N/D
Citas
Abdullahi, S. et al. (2016) ‘Sımple Method For The Determınatıon of Band Gap of a Nanopowdered Sample Usıng Kubelka Munk Theory’, Journal of the Nigerian Association of Mathematical Physics, 35, pp. 241–246.
Aburas, M. et al. (2019), Thermochromic smart window technologies for building application: A review. Applied Energy, 255, p. 113522. https://doi.org/https://doi.org/10.1016/j.apenergy.2019.113522.
Aita, C.R. et al. (1986), Optical behavior of sputter-deposited vanadium pentoxide. Journal of Applied Physics, 60(2), pp. 749–753. https://doi.org/10.1063/1.337425.
Bahlawane, N. and Lenoble, D. (2014), Vanadium Oxide Compounds: Structure, Properties, and Growth from the Gas Phase. Chemical Vapor Deposition, 20(7-8–9), pp. 299–311. https://doi.org/https://doi.org/10.1002/cvde.201400057.
Bannuru, T. et al. (2008), The electrical and mechanical properties of Au–V and Au–V2O5 thin films for wear-resistant RF MEMS switches. Journal of Applied Physics, 103(8), p. 83522. https://doi.org/10.1063/1.2902954.
Barceloux, D.G. and Barceloux, D. (1999), Vanadium. Journal of Toxicology: Clinical Toxicology, 37(2), pp. 265–278. https://doi.org/10.1081/CLT-100102425.
Blum, R.-P. et al. (2007), Surface Metal-Insulator Transition on a Vanadium Pentoxide (001) Single Crystal. Physical Review Letters, 99(22), p. 226103. https://doi.org/10.1103/PhysRevLett.99.226103.
Chain, E.E. (1991), Optical properties of vanadium dioxide and vanadium pentoxide thin films. Applied Optics, 30(19), pp. 2782–2787. https://doi.org/10.1364/AO.30.002782.
Chen, C.Y. et al. (2019), Vanadium Oxide as Transparent Carrier-Selective Layer in Silicon Hybrid Solar Cells Promoting Photovoltaic Performances. ACS Applied Energy Materials, 2(7), pp. 4873–4881. https://doi.org/10.1021/acsaem.9b00565.
Escobar-Alarcón, L., D.A. Solis-Casados, S. Romero, E. Haro-Poniatowski (2024), TiO2-Fe2O3 binary thin films prepared by magnetron sputtering for photocatalytic applications. Materials Science and Engineering B, 302, 117261.
Escobar-Alarcón, L., E. Camps, M.A. Castro, S. Muhl, J. A. Mejia-Hernandez
(2005), Effect of the plasma parameters on the properties of titanium nitride thin films grown by laser ablation. Applied Physics A, 81 (6), pp 1221-1226.
Gonzalez-Zavala, F. et al. (2016), Preparation of vanadium oxide thin films modified with Ag using a hybrid deposition configuration. Applied Physics A: Materials Science and Processing, 122(4), pp. 1–6. https://doi.org/10.1007/s00339-016-9991-0.
Hu, Peng et al. (2023), Vanadium Oxide: Phase Diagrams, Structures, Synthesis, and Applications. Chemical Reviews, 123(8), pp. 4353–4415. https://doi.org/10.1021/acs.chemrev.2c00546.
Ivanovskaya, V. V et al. (2003), Electronic properties of single-walled V2O5 nanotubes. Solid State Communications, 126(9), pp. 489–493. https://doi.org/https://doi.org/10.1016/S0038-1098(03)00254-0.
Julien, C., E. Haro-Poniatowski, L. Escobar-Alarcón, M.A. Camacho-López, J. Jimenez-Jarquin (1999), Growth of V2O5 thin films by pulsed laser deposition and their applications in lithium microbatteries. Materials Science and Engineering B, 63, 170-176.
Julien, C., Nazri, G.A. and Bergström, O. (1997), Raman Scattering Studies of Microcrystalline V6O13, Physica status solidi (b), 201(1), pp. 319–326. https://doi.org/https://doi.org/10.1002/1521-3951(199705)201:1<319::AID-PSSB319>3.0.CO;2-T.
Liu, A. et al. (2007), Vanadium-oxide nanotubes: Synthesis and template-related electrochemical properties. Electrochemistry Communications, 9(7), pp. 1766–1771. https://doi.org/https://doi.org/10.1016/j.elecom.2007.03.027.
Liu, X. et al. (2006), The effect of thermal annealing and laser irradiation on the microstructure of vanadium oxide nanotubes. Applied Surface Science, 253(5), pp. 2747–2751. https://doi.org/https://doi.org/10.1016/j.apsusc.2006.05.041.
Mai, L. et al. (2011), Vanadium oxide nanowires for Li-ion batteries. Journal of Materials Research. 2011/07/13, 26(17), pp. 2175–2185. https://doi.org/DOI: 10.1557/jmr.2011.171.
Mendialdua, J., Casanova, R. and Barbaux, Y. (1995), XPS studies of V2O5, V6O13, VO2 and V2O3. Journal of Electron Spectroscopy and Related Phenomena, 71(3), pp. 249–261. https://doi.org/https://doi.org/10.1016/0368-2048(94)02291-7.
Morales Méndez, J. G, B. A. Macías Ayala, A. A. Aguilar Cardoso, J. G. Limas González, L. Escobar Alarcón, M. Picquart, E. Haro Poniatowski (2023), Surface Enhanced Raman Spectroscopy of Methylene Blue Deposited on Ag Nanostructured Substrates prepared by PLD. Vacuum, 207: 111580.
Moulder, J.F. et al. (1992), Handbook of X-ray Photoelectron Spectroscopy: A reference book of standard spectra for identification and interpretation of XPS data. Eden Prairie, Minnesota: Physical Electronics Division, Perkin-Elmer Corporation, p. 261.
Muhr, H.-J. et al. (2000), Vanadium Oxide Nanotubes—A New Flexible Vanadate Nanophase. Advanced Materials, 12(3), pp. 231–234. https://doi.org/https://doi.org/10.1002/(SICI)1521-4095(200002)12:3<231::AID-ADMA231>3.0.CO;2-D.
Murphy, A.B. (2007), Band-gap determination from diffuse reflectance measurements of semiconductor films, and application to photoelectrochemical water-splitting. Solar Energy Materials and Solar Cells, 91(14), pp. 1326–1337. https://doi.org/10.1016/j.solmat.2007.05.005.
Neuville, D.R. (2006), Viscosity, structure and mixing in (Ca, Na) silicate melts. Chemical Geology, 229(1), pp. 28–41. https://doi.org/https://doi.org/10.1016/j.chemgeo.2006.01.008.
Pan, M. et al. (2004), Raman study of the phase transition in VO2 thin films. Journal of Crystal Growth, 268(1), pp. 178–183. https://doi.org/https://doi.org/10.1016/j.jcrysgro.2004.05.005.
Parker, J.C. et al. (1990), Optical properties of vanadium pentoxide determined from ellipsometry and band-structure calculations. Physical Review B, 42(8), pp. 5289–5293. https://doi.org/10.1103/PhysRevB.42.5289.
Pooseekheaw, P. et al. (2022), Effect of magnetic field on improvement of photocatalytic performance of V2O5/TiO2 nanoheterostructure films prepared by sparking method. Scientific Reports, 12(1), p. 2298. https://doi.org/10.1038/s41598-022-05015-2.
Salamati, M. et al. (2019), Preparation of TiO2@W-VO2 thermochromic thin film for the application of energy efficient smart windows and energy modeling studies of the produced glass. Construction and Building Materials, 218, pp. 477–482. https://doi.org/10.1016/j.conbuildmat.2019.05.046.
Schilbe, P. (2002), Raman scattering in VO2. Physica B: Condensed Matter, 316–317, pp. 600–602. https://doi.org/https://doi.org/10.1016/S0921-4526(02)00584-7.
Selvakumar, N. and Barshilia, H.C. (2012), Review of physical vapor deposited (PVD) spectrally selective coatings for mid- and high-temperature solar thermal applications. Solar Energy Materials and Solar Cells, 98, pp. 1–23. https://doi.org/https://doi.org/10.1016/j.solmat.2011.10.028.
Souza Filho, A.G. et al. (2004), Raman Spectra in Vanadate Nanotubes Revisited. Nano Letters, 4(11), pp. 2099–2104. https://doi.org/10.1021/nl0488477.
Tauc, J., Grigorovici, R. and Vancu, A. (1966), Optical Properties and Electronic Structure of Amorphous Germanium. Physica statu solidi (b), 15(2), pp. 627–637. https://doi.org/10.1002/pssb.19660150224.
Théry, V. et al. (2016), Role of thermal strain in the metal-insulator and structural phase transition of epitaxial VO2 films. Physical Review B, 93(18), p. 184106. https://doi.org/10.1103/PhysRevB.93.184106.
Ureña-Begara, F., Crunteanu, A. and Raskin, J.-P. (2017), Raman and XPS characterization of vanadium oxide thin films with temperature. Applied Surface Science, 403, pp. 717–727. https://doi.org/https://doi.org/10.1016/j.apsusc.2017.01.160.
Utegulov, Z.N. et al. (2003), Structural characterization of Eu2O3–MgO–Na2O–Al2O3–SiO2 glasses with varying Eu2O3 content: Raman and NMR studies. Journal of Non-Crystalline Solids, 315(1), pp. 43–53. https://doi.org/https://doi.org/10.1016/S0022-3093(02)01594-6.
Wang, C. C. et al. (2021), Structure and Photoluminescence Properties of Thermally Synthesized V2O5 and Al-Doped V2O5 Nanostructures. Materials 14(2), 359. https://doi.org/10.3390/ma14020359.
Wang, N. et al. (2016)y, Terbium-Doped VO2 Thin Films: Reduced Phase Transition Temperature and Largely Enhanced Luminous Transmittancey. Langmuir, 32(3), pp. 759–764. https://doi.org/10.1021/acs.langmuir.5b04212.
Zhang, Y. et al. (2012), Preparation of W- and Mo-doped VO2(M) by ethanol reduction of peroxovanadium complexes and their phase transition and optical switching properties. Journal of Alloys and Compounds, 544, pp. 30–36. https://doi.org/https://doi.org/10.1016/j.jallcom.2012.07.093.
Zhou, Q. et al. (2020), Boron doped M-phase VO2 nanoparticles with low metal-insulator phase transition temperature for smart windows. Ceramics International, 46(4), pp. 4786–4794. https://doi.org/https://doi.org/10.1016/j.ceramint.2019.10.211.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2025 Luis Escobar-Alarcón, Luis Alejandro Martínez-Chávez, Karen Esquivel Escalante, Dora Alicia Solis Casados , David Fuentes Molina

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.










