Degradación de farmacéuticos y colorantes por foto-Fenton con luz solar

Palabras clave: 17β-estradiol, ampicilina, rojo 40, amarillo 5, foto-Fenton

Resumen

17β-estradiol (E2), ampicilina (AMP), así como los colorantes sintéticos Rojo 40 y Amarillo 5, se han incluido en el grupo de contaminantes emergentes (CEs). Estos generan diferentes problemas ambientales como disrupción endocrina en biota acuática a concentraciones traza. Debido a su compleja estructura son difíciles de degradar por tratamientos convencionales. Los procesos de oxidación avanzada (POA) tipo Fenton han mostrado resultados prometedores en la oxidación de compuestos orgánicos en tiempos cortos de reacción. En este trabajo se evaluó un proceso foto-Fenton con luz solar para la eliminación de E2, AMP, colorantes Rojo 40 y Amarillo 5 en agua con H2O2 como agente oxidante y FeSO4·7H2O como catalizador. Se obtuvieron eficiencias de oxidación de E2, AMP, Rojo 40 y Amarillo 5 superiores al 90 % y la degradación siguió un modelo de reacción de primer orden. Por ello, los procesos de oxidación foto-Fenton resultan eficientes en la oxidación de E2 y AMP, así como la decoloración de rojo 40 y amarillo 5.

Descargas

La descarga de datos todavía no está disponible.

Citas

Ameta, R., Chohadia, A. K., Jain, A., Punjabi, P. B. (2018). Fenton and PhotoFenton Processes. En Advanced oxidation processes for wastewater treatment. Elsevier Inc., 49-76. Doi: https://doi.org/10.1016/B978-0-12-

-6.00003-6 Anjali, R., Shanthakumar, S. (2019). Insights on the current status of occurrence and removal of antibiotics in wastewater by advanced oxidation processes. Journal of Environmental Management, 246, 51-62.

doi: https://doi.org/10.1016/j.jenvman.2019.05.090

Arshad, R., Bokhari, T., Javed, T., Bhatti, I., Rasheed, S., Iqbal, M., Nazir, A.,

Naz, S., Khan, M.I., Khosa, M. K. K., Iqbal, M., Zia-ur-Rehman, M.

(2020). Degradation product distribution of Reactive Red-147 dye treated

by UV/H2O2/TiO2 advanced oxidation process. Journal of Materials

Research and Technology, 9(3), 3168-3178. Doi:

https://doi.org/10.1016/j.jmrt.2020.01.062

Barciela, P., Perez-Vazquez, A., Prieto, M. A. (2023). Azo dyes in the food

industry: Features, classification, toxicity, alternatives, and regulation.

Food and Chemical Toxicology, 178, 113935. Doi:

https://doi.org/10.1016/j.fct.2023.113935

Bennett, J. L., Mackie, A. L., Park, Y., Gagnon, G. A. (2018). Advanced

oxidation processes for treatment of 17β-Estradiol and its metabolites in

aquaculture wastewater. Aquacultural Engineering, 83, 40-46. Doi:

https://doi.org/10.1016/j.aquaeng.2018.08.003

Camacho-López, C., Romo-Gómez, C., Otazo-Sánchez, E. M., AcevedoSandoval, O. A., García-Nieto, E., Juárez Santacruz, L. (2022).

Biotransformation of 17β-Estradiol through a Denitrifying Sludge.

International Journal of Environmental Research and Public Health,

(20), 13326. Doi: https://doi.org/10.3390/ijerph192013326

Cuerda-Correa, E. M., Alexandre-Franco, M. F., Fernández-González, C.

(2019). Advanced Oxidation Processes for the Removal of Antibiotics

from Water. Water, 12(1), 102. Doi: https://doi.org/10.3390/w12010102

De Carvalho, C. B., Rosa, I. R., Del Vecchio, P., Dávila, I. V., Nunes, K. G.,

Marcilio, N. R., Féris, L. A. (2022). Degradation of ampicillin by

combined process: Adsorption and Fenton reaction. Environmental

Technology & Innovation, 26, 102365. Doi:

https://doi.org/10.1016/j.eti.2022.102365

De Ilurdoz, M. S., Sadhwani, J. J., Reboso, J. V. (2022). Antibiotic removal

processes from water & wastewater for the protection of the aquatic

environment. Journal of Water Process Engineering, 45, 102474. Doi:

https://doi.org/10.1016/j.jwpe.2021.102474

do Nascimento, G. E., Cavalcanti, V., O., M., Santana, R., M., R., Sales, D.,

C., S., Rodríguez-Díaz, J., M., Napoleão, D., C., Duarte, M., M., M, B.

(2020). Degradation of a Sunset Yellow and Tartrazine Dye Mixture:

Optimization Using Statistical Design and Empirical Mathematical

Modeling. Water Air & Soil Pollution, 231(254). Doi:

https://doi.org/10.1007/s11270-020-04547-5

Dostanić, J., Huš, M., Lončarević, D. (2020). Effect of substituents in hydroxyl

radical-mediated degradation of azo pyridone dyes: Theoretical

approaches on the reaction mechanism. Journal of Environmental

Sciences, 98, 14-21. Doi: https://doi.org/10.1016/j.jes.2020.05.022

Elsayed, M. A., Awaad, M. I., Tantawy, H. R. (2020). Advanced Oxidations

of tartrazine Azo-dye. Advanced Materials Letters, 11(6), 1-5. Doi:

https://doi.org/10.5185/amlett.2020.031492

Forghani, M., Sadeghi, G., Peyda, M. (2018). The Presence of 17 BetaEstradiol in the Environment: Health. International Journal of

Epidemiologic Research, 5(4), 151-158. Doi:

http://dx.doi.org/10.15171/ijer.2018.31

Frieri, M., Kumar, K., Boutin, A. (2017). Antibiotic resistance. Journal of

Infection and Public Health, 10(4), 369-378. Doi:

https://doi.org/10.1016/j.jiph.2016.08.007

Guerrero, Y. A., Romo, C., Camacho, C., Acevedo, O. A., González, C. A.,

Montiel, S. (2024). HCO3

- production from 17β-estradiol oxidation by

photo-Fenton as a strategy to avoid the generation of greenhouse gases.

Revista Mexicana de Ingeniería Química, 23(2), IA24118. Doi:

https://doi.org/10.24275/rmiq/IA24118

Herrera-García, S., Aguirre-Ramírez, M., Torres-Pérez, J. (2020). Comparison

between Allura Red dye discoloration by activated carbon and azo

bacteria strain. Environmental Science and Pollution Research, 27,

–29696. Doi: https://doi.org/10.1007/s11356-020-09584-5

Ioannou-Ttofa, L., Raj, S., Prakash, H., Fatta-Kassinos, D. (2019). Solar

photo-Fenton oxidation for the removal of ampicillin, total cultivable and

resistant E. coli and ecotoxicity from secondary-treated wastewater

effluents. Chemical Engineering Journal, 355, 91-102. Doi:

https://doi.org/10.1016/j.cej.2018.08.057

Kaczorowska, M. A., Bozejewicz, D., Witt, K. (2023). The Application of

Polymer Inclusion Membranes for the Removal of Emerging

Contaminants and Synthetic Dyes from Aqueous Solutions—A Mini

Review. Membranes, 13(2), 132. Doi:

https://doi.org/10.3390/membranes13020132

Khan, M., Khan, A., Khan, H., Ali, N., Sartaj, S., Malik, S., Nauman, A., Khan,

H., Shah, S., Bilal, M. (2021). Development and characterization of

regenerable chitosan-coated nickel selenide nano-photocatalytic system

for decontamination of toxic azo dyes. International Journal of Biological

Macromolecules, 182, 866-878. Doi:

https://doi.org/10.1016/j.ijbiomac.2021.03.192

Krishnakumar, S., Singh, D. S., Godson, P. S., Gnana Thanga, S. (2022).

Emerging pollutants: impact on environment, management, and

challenges. Environmental Science and Pollution Research, 29, 72309–

Doi: https://doi.org/10.1007/s11356-022-22859-3

Kumar, R., Qureshi, M., Vishwakarma, D. K., Al-Ansari, N., Kuriqi, A.,

Elbeltagi, A., Saraswat, A. (2022). A review on emerging water

contaminants and the application of sustainable removal technologies.

Case Studies in Chemical and Environmental Engineering, 6, 100219.

Doi: https://doi.org/10.1016/j.cscee.2022.100219

Micheletti, D. H., Andrade, J. G., Porto, C. E., Alves, B. H., Carvalho, F. R.,

Sakai, O. A., Batistela, V. R. (2023). A review of adsorbents for removal

of yellow tartrazine dye from water and wastewater. Bioresource

Technology Reports, 24, 101598. Doi:

https://doi.org/10.1016/j.biteb.2023.101598

Montoya-Rodríguez, D. M., Serna-Galvis, E. A., Ferraro, F., Torres-Palma, R.

A. (2020). Degradation of the emerging concern pollutant ampicillin in

aqueous media by sonochemical advanced oxidation processes -

Parameters effect, removal of antimicrobial activity and pollutant

treatment in hydrolyzed urine. Journal of Environmental Management,

, 110224. Doi: https://doi.org/10.1016/j.jenvman.2020.110224

Pay, R., Sharrock, A. V., Elder, R., Maré, A., Bracegirdle, J., Torres, D.,

Malone, N., Vorster, J., Kelly, L., Ryan, A., Josephy, P. D., Vercoe, E.,

Ackerley, D. F., Keyzers, R. A., Harvey, J. E. (2023). Preparation,

analysis and toxicity characterisation of the redox metabolites of the azo

food dye tartrazine. Food and Chemical Toxicology, 182, 114193. Doi:

https://doi.org/10.1016/j.fct.2023.114193

Polo-López, M. I., Sánchez-Pérez, J. A. (2021). Perspectives of the solar

photo-Fenton process against the spreading of pathogens, antibioticresistant bacteria and genes in the environment. Current Opinion in Green

and Sustainable Chemistry, 27, 100416. Doi:

https://doi.org/10.1016/j.cogsc.2020.100416

Ramírez-Muñoz, J. J., Cuervo López, F. de M., Texier, A. (2020). Ampicillin

biotransformation by a nitrifying consortium. World Journal of

Microbiology and Biotechnology, 36(21). . Doi:

https://doi.org/10.1007/s11274-020-2798-3

Roby, K. (2019). 17 Beta Estradiol. Reference Module in Biomedical

Sciences. Doi: https://doi.org/10.1016/B978-0-12-801238-3.98019-X

Rodríguez, D. C., Ahammad, Z. S., Peñuela, G. A., Graham, D. W. (2020).

Effect of β -lactamases associated to the resistance of β -lactam antibiotics

on the treatment of wastewater. Journal of Environmental Chemical

Engineering, 8(1), 102247. Doi:

https://doi.org/10.1016/j.jece.2018.03.006

Rodríguez, M., & Barrera, C. E. (Agosto de 2020). Procesos de oxidación en

el tratamiento de agua. Toluca: Universidad Autónoma del Estado de

México.

Samal, K., Mahapatra, S., Hibzur, M. (2022). Pharmaceutical wastewater as

Emerging Contaminants (EC): Treatment technologies, impact on

environment and human health. Energy Nexus, 6, 100076. Doi:

https://doi.org/10.1016/j.nexus.2022.100076

Sharma, P., Swarnkar, M., Shahani, L. (2022). Effect of food colorant allura

red on hematological, biochemical & antioxidant parameters of Swiss

albino male mice. Materialstoday: Proceedings, 69, A12-A17. Doi:

https://doi.org/10.1016/j.matpr.2023.01.097

Silva, M. M., Reboredo, F. H., Lidon, F. C. (2022). Food Colour Additives: A

Synoptical Overview on Their Chemical Properties, Applications in Food

Products, and Health Side Effects. Foods, 11(3), 379. Doi:

https://doi.org/10.3390/foods11030379

Streit, A. F., Côrtes, L. N., Druzian, S. P., Godinho, M., Collazzo, G. C.,

Perondi, D., Dotto, G. L. (2019). Development of high quality activated

carbon from biological sludge and its application for dyes removal from

aqueous solutions. Science of the Total Environment, 660, 277 - 287. Doi:

https://doi.org/10.1016/j.scitotenv.2019.01.027

Vilar, D. d., Torres, N. H., Bharagava, R. N., Bilal, M., Iqbal, H. M., SalazarBanda, G. R., Barrios, K. I., Ferreira, L. F. (2021). Emerging contaminants

in environment: occurrence, toxicity, and management strategies with

emphasis on microbial remediation and advanced oxidation processes. En

Mediated Remediation of Environmental Contaminants, 1-14. Doi:

https://doi.org/10.1016/C2019-0-01782-7

Yu, N., Zhao, C., Ma, B., Li, S., She, Z., Guo, L., Zhang, Q., Zhao, Y., Jin, C.,

Gao, M. (2019). Impact of ampicillin on the nitrogen removal, microbial

community and enzymatic activity of activated sludge. Bioresource

Technology, 272, 337-345. Doi:

https://doi.org/10.1016/j.biortech.2018.10.048

Yu, Z., Lai, R. Y. (2018). A reagentless and reusable electrochemical aptamerbased sensor for rapid detection of ampicillin in complex samples.

Talanta, 176, 619-624. Doi: https://doi.org/10.10

Publicado
2024-06-07
Cómo citar
Ramírez-Moreno, J., Romo Gómez, C., Camacho-López, C., Acevedo-Sandoval, O. A., Leyva-Morales, J. B., & González-Ramírez, C. A. (2024). Degradación de farmacéuticos y colorantes por foto-Fenton con luz solar. Pädi Boletín Científico De Ciencias Básicas E Ingenierías Del ICBI, 12(24). Recuperado a partir de https://repository.uaeh.edu.mx/revistas/index.php/icbi/article/view/12781
Tipo de manuscrito
Artículos de investigación