Shape influence of β-MnO2 on catalytic activity in the oxygen reduction reaction in alkaline media
DOI:
https://doi.org/10.29057/icbi.v13i25.12916Palabras clave:
Manganese oxide, the oxygen reduction reaction (ORR), nanorods, dandelions, catalystsResumen
Rutile-phase β-ΜnO2 nanostructures were produced using the hydrothermal method. The nanostructures were in the form of rods, and their hierarchical architecture to those resembling a dandelion flower were compared. The morphology was examined through scanning/transmission electron microscopy (SEM/TEM), the Rietveld refinement technique, and surface area analysis, while the oxidation states were determined using X-ray Photoelectron Spectroscopy-Ultraviolet Photoelectron Spectroscopy (XPS-UPS). Both nanostructures were evaluated as catalysts for the oxygen reduction reaction (ORR) in alkaline environments. The results suggest that introducing shape increased the specific surface area and the Mn4+/Mn3+ ratio. This variation can be attributed to the microstructural changes. The ORR was facilitated by a four-electron mechanism, increasing current density. This enhancement was observed, as well as in rod-shaped and dandelion-shaped structures. Hydrogen peroxide (H2O2) production rates were determined using a rotating ring-disk electrode (RRDE), which was less than 20% in dandelion compared to nanorods. This study enhances our understanding of β-ΜnO2 catalysts and highlights their potential in the energy conversion.
Descargas
Información de Publicación
Perfiles de revisores N/D
Declaraciones del autor
Indexado en
- Sociedad académica
- N/D
Citas
Arandiyan, H., Dai, H., Deng, J., Liu, Y., Bai, B., Wang, Y., Li, X., Xie, S., & Li, J. (2013). Three-dimensionally ordered macroporous La0.6Sr0.4MnO3 with high surface areas: Active catalysts for the combustion of methane. Journal of Catalysis, 307, 327–339. https://doi.org/10.1016/j.jcat.2013.07.013
Arges, C. G., Ramani, V., & Pintauro, P. N. (2010). Anion exchange membrane fuel cells. In Electrochemical Society Interface (Vol. 19, Issue 2). https://doi.org/10.1149/2.F03102if
Balan, L., Matei Ghimbeu, C., Vidal, L., & Vix-Guterl, C. (2013). Photoassisted synthesis of manganese oxide nanostructures using visible light at room temperature. Green Chemistry, 15(8), 2191. https://doi.org/10.1039/c3gc40487k
Bocquet, A. E., Mizokawa, T., Saitoh, T., Namatame, H., & Fujimori, A. (1992). Electronic structure of 3d -transition-metal compounds by analysis of the 2p core-level photoemission spectra. Physical Review B, 46(7), 3771–3784. https://doi.org/10.1103/PhysRevB.46.3771
Cheng, F., Su, Y., Liang, J., Tao, Z., & Chen, J. (2010). MnO2 -Based Nanostructures as Catalysts for Electrochemical Oxygen Reduction in Alkaline Media †. Chemistry of Materials, 22(3), 898–905. https://doi.org/10.1021/cm901698s
Cui, C., Du, G., Zhang, K., An, T., Li, B., Liu, X., & Liu, Z. (2020). Co3O4 nanoparticles anchored in MnO2 nanorods as efficient oxygen reduction reaction catalyst for metal-air batteries. Journal of Alloys and Compounds, 814, 152239. https://doi.org/10.1016/j.jallcom.2019.152239
Ferriday, T. B., & Middleton, P. H. (2021). Alkaline fuel cell technology - A review. International Journal of Hydrogen Energy, 46(35), 18489–18510. https://doi.org/10.1016/j.ijhydene.2021.02.203
Gottesfeld, S., Dekel, D. R., Page, M., Bae, C., Yan, Y., Zelenay, P., & Kim, Y. S. (2018). Anion exchange membrane fuel cells: Current status and remaining challenges. Journal of Power Sources, 375, 170–184. https://doi.org/10.1016/j.jpowsour.2017.08.010
Gu, Y., Yan, G., Lian, Y., Qi, P., Mu, Q., Zhang, C., Deng, Z., & Peng, Y. (2019). MnIII-enriched α-MnO2 nanowires as efficient bifunctional oxygen catalysts for rechargeable Zn-air batteries. Energy Storage Materials, 23, 252–260. https://doi.org/10.1016/j.ensm.2019.05.006
Han, C.-G., Zhu, C., Aoki, Y., Habazaki, H., & Akiyama, T. (2017). MnO/N–C anode materials for lithium-ion batteries prepared by cotton-templated combustion synthesis. Green Energy & Environment, 2(4), 377–386. https://doi.org/10.1016/j.gee.2017.08.004
Han, S. W., Lee, J. D., Kim, K. H., Song, H., Kim, W. J., Kwon, S. J., Lee, H. G., Hwang, C., Jeong, J. I., & Kang, J.-S. (2002). Electronic Structures of the CMR Perovskites R1−x Ax MnO3 (R = La, Pr; A = Ca, Sr, Ce) Using Photoelectron Spectroscopy. Journal of the Korean Physical Society, 40(3), 501–510.
Huang, M., Mi, R., Liu, H., Li, F., Zhao, X. L., Zhang, W., He, S. X., & Zhang, Y. X. (2014). Layered manganese oxides-decorated and nickel foam-supported carbon nanotubes as advanced binder-free supercapacitor electrodes. Journal of Power Sources, 269, 760–767. https://doi.org/10.1016/j.jpowsour.2014.07.031
Li, Z., Yang, Y., Relefors, A., Kong, X., Siso, G. M., Wickman, B., Kiros, Y., & Soroka, I. L. (2021). Tuning morphology, composition and oxygen reduction reaction (ORR) catalytic performance of manganese oxide particles fabricated by γ-radiation induced synthesis. Journal of Colloid and Interface Science, 583, 71–79. https://doi.org/10.1016/j.jcis.2020.09.011
Lima, F. H. B., Calegaro, M. L., & Ticianelli, E. A. (2006). Investigations of the catalytic properties of manganese oxides for the oxygen reduction reaction in alkaline media. Journal of Electroanalytical Chemistry, 590(2), 152–160. https://doi.org/10.1016/j.jelechem.2006.02.029
Lübke, M., Sumboja, A., McCafferty, L., Armer, C. F., Handoko, A. D., Du, Y., McColl, K., Cora, F., Brett, D., Liu, Z., & Darr, J. A. (2018). Transition-Metal-Doped α-MnO2 Nanorods as Bifunctional Catalysts for Efficient Oxygen Reduction and Evolution Reactions. ChemistrySelect, 3(9), 2613–2622. https://doi.org/10.1002/slct.201702514
Malkhandi, S., Trinh, P., Manohar, A. K., Jayachandrababu, K. C., Kindler, A., Surya Prakash, G. K., & Narayanan, S. R. (2013). Electrocatalytic Activity of Transition Metal Oxide-Carbon Composites for Oxygen Reduction in Alkaline Batteries and Fuel Cells. Journal of The Electrochemical Society, 160(9), F943–F952. https://doi.org/10.1149/2.109308jes
National Institute of Standards and Technology. (2000). NIST X-ray Photoelectron Spectroscopy Database. NIST Standard Reference Database Number 20. https://doi.org/10.18434/T4T88K
Pinaud, B. A., Chen, Z., Abram, D. N., & Jaramillo, T. F. (2011). Thin Films of Sodium Birnessite-Type MnO2 : Optical Properties, Electronic Band Structure, and Solar Photoelectrochemistry. The Journal of Physical Chemistry C, 115(23), 11830–11838. https://doi.org/10.1021/jp200015p
Rojas, F., Kornhauser, I., Felipe, C., Esparza, J. M., Cordero, S., Domínguez, A., & Riccardo, J. L. (2002). Capillary condensation in heterogeneous mesoporous networks consisting of variable connectivity and pore-size correlation. Physical Chemistry Chemical Physics, 4(11), 2346–2355. https://doi.org/10.1039/b108785a
Ryabova, A. S., Napolskiy, F. S., Poux, T., Istomin, S. Y., Bonnefont, A., Antipin, D. M., Baranchikov, A. Y., Levin, E. E., Abakumov, A. M., Kéranguéven, G., Antipov, E. V., Tsirlina, G. A., & Savinova, E. R. (2016).
Rationalizing the Influence of the Mn(IV)/Mn(III) Red-Ox Transition on the Electrocatalytic Activity of Manganese Oxides in the Oxygen Reduction Reaction. Electrochimica Acta, 187(2016), 161–172. https://doi.org/10.1016/j.electacta.2015.11.012
Sing, K. S. W. (1985). Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure and Applied Chemistry, 57(4), 603–619. https://doi.org/10.1351/pac198557040603
Stoerzinger, K. A., Risch, M., Han, B., & Shao-Horn, Y. (2015). Recent Insights into Manganese Oxides in Catalyzing Oxygen Reduction Kinetics. ACS Catalysis, 5(10), 6021–6031. https://doi.org/10.1021/acscatal.5b01444
Velázquez-Palenzuela, A., Centellas, F., Brillas, E., Arias, C., Rodríguez, R. M., Garrido, J. A., & Cabot, P.-L. (2012). Kinetic effect of the ionomer on the oxygen reduction in carbon-supported Pt electrocatalysts. International Journal of Hydrogen Energy, 37(23), 17828–17836. https://doi.org/10.1016/j.ijhydene.2012.09.090
Venkata Swetha, J., Parse, H., Kakade, B., & Geetha, A. (2018). Morphology dependent facile synthesis of manganese oxide nanostructures for oxygen reduction reaction. Solid State Ionics, 328(October), 1–7. https://doi.org/10.1016/j.ssi.2018.11.002
Xie, S., Dai, H., Deng, J., Yang, H., Han, W., Arandiyan, H., & Guo, G. (2014). Preparation and high catalytic performance of Au/3DOM Mn2O3 for the oxidation of carbon monoxide and toluene. Journal of Hazardous Materials, 279, 392–401. https://doi.org/10.1016/j.jhazmat.2014.07.033
Zapata-Fernández, J. R., Gochi-Ponce, Y., Salazar-Gastélum, M. I., Reynoso-Soto, E. A., Paraguay-Delgado, F., Lin, S. W., & Félix-Navarro, R. M. (2017). Ultrasonic-assisted galvanic displacement synthesis of Pt–Pd/MWCNT for enhanced oxygen reduction reaction: Effect of Pt concentration. International Journal of Hydrogen Energy, 42(15), 9806–9815. https://doi.org/10.1016/j.ijhydene.2017.02.057
Zhang, B., Cheng, G., Lan, B., Zheng, X., Sun, M., Ye, F., Yu, L., & Cheng, X. (2016). Crystallization design of MnO2 via acid towards better oxygen reduction activity. CrystEngComm, 18(36), 6895–6902. https://doi.org/10.1039/C6CE01131D
Zhao, X., Liu, X., Li, F., & Huang, M. (2020). MnO2@NiO nanosheets@nanowires hierarchical structures with enhanced supercapacitive properties. Journal of Materials Science, 55(6), 2482–2491. https://doi.org/10.1007/s10853-019-04112-4
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2024 Iván Cruz-Reyes, Rosa María Félix-Navarro, Balter Trujillo-Navarrete

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.