Envases de bebidas multicapa como refuerzo mecánico de resina poliéster
DOI:
https://doi.org/10.29057/icbi.v12iEspecial5.13487Palabras clave:
Envases multicapa, Tetra Pak, Reciclamiento, Resina poliéster insaturada, Propiedades mecánicasResumen
Los envases multicapa Tetra Pak son utilizados para conservar alimentos por largos periodos de tiempo y a bajos costos. Lamentablemente, solo se recicla el 30% de los envases utilizados, además estos no son reutilizados en alguna aplicación, lo que los convierte en materiales altamente contaminantes. Por estas razones, en este trabajo se obtuvieron partículas de 1x1 mm, de envases Tetra Pak, las cuales se mezclaron en cantidades de 1, 2 ,3 y 10% en peso con resina poliéster insaturada (UPR). Estos materiales compuestos fueron sometidos a pruebas de tensión, impacto tipo Charpy y absorción de agua. Los resultados muestran que con la adición de partículas de Tetra Pak, se obtuvieron mejoras del 50% en la deformación, 47% en el módulo de elasticidad, 44% en la resistencia a la tensión, y 36% en la resistencia al impacto. Mientras que la máxima absorción de agua fue de 0.17%.
Descargas
Información de Publicación
Perfiles de revisores N/D
Declaraciones del autor
Indexado en
- Sociedad académica
- N/D
Citas
Alhijazi, M., Safaei, B., Zeeshan, Q., Asmael, M., Eyvazian, A., & Qin, Z. (2020). Recent developments in luffa natural fiber composites. Sustainability, 12(18), 7683. DOI: 10.3390/su12187683
Auriga, R., Borysiuk, P., & Auriga, A. (2021). An attempt to use „Tetra Pak” waste material in particleboard technology. Annals of Warsaw University of Life Sciences-SGGW. Forestry and Wood Technology, 114, 70-75.
Batista, L., Dora, M., Garza-Reyes, J. A., & Kumar, V. (2021). Improving the sustainability of food supply chains through circular economy practices–a qualitative mapping approach. Management of Environmental Quality: An International Journal, 32(4), 752-767. DOI: 10.1108/MEQ-09-2020-0211
Bonocore, G., & De Luca, P. (2022). Preparation and characterization of insulating panels from recycled polylaminate (Tetra Pak) materials. Sustainability, 14 (11), 1-15. DOI: 10.3390/su14116858
Buğdaycı, M., Turan, A., Öncel, L., & Bayıroğlu, F. (2023). Al2O3 Recovery From Waste Tetra Pak Packages. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, 39(3), 463-474.
Cravero, F., & Frache, A. (2020). Improving Fire Performances of PEAL: More Second-Life Options for Recycled Tetra Pak®. Polymers, 12 (10), 1-14. DOI: 10.3390/polym12102357
Dave, A., & Reddy, S. N. (2023). Solvothermal liquefaction of Tetra Pak waste into biofuels and Al2O3-carbon nanocomposite. Waste Management, 171, 642-652. DOI: 10.1016/j.wasman.2023.10.013
Elfaleh, I., Abbassi, F., Habibi, M., Ahmad, F., Guedri, M., Nasri, M., & Garnier, C. (2023). A comprehensive review of natural fibers and their composites: an eco-friendly alternative to conventional materials. Results in Engineering, 101271. DOI: 10.1016/j.rineng.2023.101271
Georgiopoulou, I., Pappa, G. D., Vouyiouka, S. N., & Magoulas, K. (2021). Recycling of post-consumer multilayer Tetra Pak® packaging with the Selective Dissolution-Precipitation process. Resources, Conservation and Recycling, 165, 105268. DOI: 10.1016/j.resconrec.2020.105268
Guerra-Garcés, J., Garcia-Negrete, C. A., Pastor-Sierra, K., Arteaga, G. C., Barrera-Vargas, M., de Haro, M. J., & Fernández, A. (2022). Morphologically diverse CaCO3 microparticles and their incorporation into recycled cellulose for circular economy. Materials Today Sustainability, 19, 100166. DOI: 10.1016/j.mtsust.2022.100166
Jasim, E. K., Zaiter, M. J., Hassan, I. K., Jassar, E. M., & Salman, Z. T. (2020). Pyrolysis of waste tetra pack. Plant Archives, 20(2), 653-656.
Kangishwar, S., Radhika, N., Sheik, A. A., Chavali, A., & Hariharan, S. (2023). A comprehensive review on polymer matrix composites: material selection, fabrication, and application. Polymer Bulletin, 80(1), 47-87. DOI: 10.1007/s00289-022-04087-4
Li, X., Qin, D., Hu, Y., Ahmad, W., Ahmad, A., Aslam, F., & Joyklad, P. (2022). A systematic review of waste materials in cement-based composites for construction applications. Journal of Building Engineering, 45, 103447. DOI: 10.1016/j.jobe.2021.103447
Macias Gallego, S., Guzmán Aponte, Á., Buitrago Sierra, R., & Santa Marín, J. F. (2020). Evaluation of mechanical properties of composites manufactured from recycled Tetra Pak® containers. Tecnura, 24(66), 36-46. DOI: 10.14483/22487638.16296
Maduwantha, M. I. P., & Jayasinghe, R. A. (2023). Possibilities of Development of Composite Materials from Tetra Pak and Metalized Film-Based Packaging Waste for Non-Structural Applications, 7(1), 1-9.
Maroušek, J. (2022). Aluminum nanoparticles from liquid packaging board improve the competitiveness of (bio)diesel. Clean Technologies and Environmental Policy. 25, 1059-1067. DOI: 10.1007/s10098-022-02413-y
Matta, S., Bartoli, M., Arrigo, R., Frache, A., & Malucelli, G. (2022). Flame retardant potential of Tetra Pak®-derived biochar for ethylene-vinyl-acetate copolymers. Composites Prt C, 8,1-14. DOI: 10.1016/j.jcomc.2022.100252
Muhammadi, A., Lahori, A. H., Vambol, V., & Vambol, S. (2021). Removal of potentially toxic metals from aqueous solution using tetra pak industrial waste as biosorbents. Labour protection problems in Ukraine, 37(3), 3-7. DOI: 10.36804/nndipbop.37-3.2021.3-7
Muñoz-Batista, M.J., Blázquez, G., Franco, J.F., Calero, M., & Martín-Lara, M.A. (2022). Recovery, separation and production of fuel, plastic and aluminum from the Tetra Pak waste to hydrothermal and pyrolysis processes. Waste Management, 137, 179-189. DOI: 10.1016/j.wasman.2021.11.007
Ncube, L. K., Ude, A. U., Ogunmuyiwa, E. N., Zulkifli, R., & Beas, I. N. (2021). An overview of plastic waste generation and management in food packaging industries. Recycling, 6(1), 12. DOI: 10.3390/recycling6010012
Platnieks, O., Barkane, A., Ijudina, N., Gaidukova, G., Thakur, V. K., & Gaidukovs, S. (2020). Sustainable tetra pak recycled cellulose/Poly (Butylene succinate) based woody-like composites for a circular economy. Journal of cleaner production, 270, 122321. DOI: 10.1016/j.jclepro.2020.122321
Pawluczuk, E., Skoczko, I., & Fernández Ledesma, E. (2022). Sustainable Composites with Solid Waste Materials. Crystals, 12(3), 411. DOI: 10.3390/cryst12030411
Qiao, Y., Fring, L. D., Pallaka, M. R., & Simmons, K. L. (2023). A review of the fabrication methods and mechanical behavior of continuous thermoplastic polymer fiber–thermoplastic polymer matrix composites. Polymer Composites, 44(2), 694-733. DOI: 10.1002/pc.27139
Rajak, D. K., Wagh, P. H., & Linul, E. (2022). A review on synthetic fibers for polymer matrix composites: performance, failure modes and applications. Materials, 15(14), 4790. DOI: 10.3390/ma15144790
Recupido, F., Lama, G. C., Lavorgna, M., Buonocore, G. G., Marzella, R., & Verdolotti, L. (2023). Post-consumer recycling of Tetra Pak®: Starting a “new life” as filler in sustainable polyurethane foams. Food Packaging and Shelf Life, 40, 101175. DOI: 10.1016/j.fpsl.2023.101175
Reichhold México. (2020). Serie Polylite® 32335. Atlacomulco: Reichhold México.
Robertson, G. L. (2021). Recycling of aseptic beverage cartons: A review. Recycling, 6(1), 20. DOI: 10.3390/recycling6010020
Şahin, G. G., & Karaboyacı, M. (2021). Process and machinery design for the recycling of tetra pak components. Journal of Cleaner Production, 323, 129186. DOI: 10.1016/j.jclepro.2021.129186
Seydibeyoğlu, M. Ö., Dogru, A., Wang, J., Rencheck, M., Han, Y., Wang, L., Seydibeyo˘glu, E. A., Zhao, X., Ong. K., Shatkin, J. A., Es-haghi, S. S., Bhandari, S., Ozcan, S., & Gardner, D. J. (2023). Review on hybrid reinforced polymer matrix composites with nanocellulose, nanomaterials, and other fibers. Polymers, 15(4), 984. DOI: 10.3390/polym15040984
Sharma, A. K., Bhandari, R., Sharma, C., Dhakad, S. K., & Pinca-Bretotean, C. (2022). Polymer matrix composites: A state of art review. Materials Today: Proceedings, 57, 2330-2333. DOI: 10.1016/j.matpr.2021.12.592
Shiferaw, M., Tegegne, A., & Asmare, A. (2023). Utilization of textile fabric waste as reinforcement for composite materials in car body applications: A review. Materials Engineering Research, 5(1), 279-290. DOI: 10.25082/MER.2023.01.004
Šleiniūtė, A., Mumladze, T., Denafas, G., Makarevičius, V., Kriūkienė, R., Antonov, M., & Vasarevičius, S. (2024). Mechanical properties of polymers recovered from multilayer food packaging by nitric acid. Sustainability, 16(5), 2106. DOI: 10.3390/su16052106
Yan, T., Xie, W., Wang, C., He, G., & Wang, K. (2024). Investigation on the synergistic effect between different components in pyrolysis of paper-plastic composite material. Journal of Analytical and Applied Pyrolysis, 177, 106337. DOI: 10.1016/j.jaap.2023.106337.