Extracción del mucílago de nopal para la elaboración de biopelículas
DOI:
https://doi.org/10.29057/icbi.v12iEspecial5.13571Palabras clave:
mucílago, k-carragenina, Propiedades térmicas, Propiedades termomecánicasResumen
La extracción del mucílago de nopal se realizó mediante maceración. Una vez extraído el mucílago, se almacenó la solución bajo refrigeración a 4 °C. Como agente gelificante se optó por utilizar gelatina vegetal (k-carragenina). El método elegido para formar las películas fue el método de casting. Una vez obtenidas las películas se llevó a cabo su caracterización. Mediante análisis de espectroscopía infrarroja se estudiaron los grupos funcionales principales del mucílago y la gelatina vegetal, así como también posibles desplazamientos de bandas. Se realizaron pruebas mecánicas y térmicas de las películas mediante análisis dinámico mecánico (DMA) y calorimetría diferencial de barrido (DSC), respectivamente. Los ensayos termomecánicos exhibieron resultados de 3.79x109 Pa para el módulo de almacenamiento, y el Tan δ muestra una transición en 15 °C asociada a la fase plastificada del mucílago. Los ensayos térmicos mostraron picos endotérmicos alrededor de los 100 °C y 225 °C, además de un pico exotérmico a 260 °C.
Descargas
Información de Publicación
Perfiles de revisores N/D
Declaraciones del autor
Indexado en
- Sociedad académica
- N/D
Citas
Angulo-Bejarano, P. I., Martínez-Cruz, O., & Paredes-Lopez, O. (2014). Phytochemical Content, Nutraceutical Potential and Biotechnological Applications of an Ancient Mexican Plant: Nopal (Opuntia ficus-indica). Current Nutrition & Food Science, 10(3), 196–217. https://doi.org/10.2174/157340131003140828121015
Beikzadeh, S., Khezerlou, A., Jafari, S. M., Pilevar, Z., & Mortazavian, A. M. (2020). Seed mucilages as the functional ingredients for biodegradable films and edible coatings in the food industry. Advances in Colloid and Interface Science, 280, 102164. https://doi.org/10.1016/j.cis.2020.102164
Camelo Caballero, L. R., Wilches-Torres, A., Cárdenas-Chaparro, A., Gómez Castaño, J. A., & Otálora, M. C. (2019). Preparation and Physicochemical Characterization of Softgels Cross-Linked with Cactus Mucilage Extracted from Cladodes of Opuntia Ficus-Indica. Molecules, 24(14), 2531. https://doi.org/10.3390/molecules24142531
Carneiro da Silva, L. R., Rios, A. de O., & Campomanes Santana, R. M. (2023). Polymer blends of poly(lactic acid) and starch for the production of films applied in food packaging: A brief review. Polymers from Renewable Resources, 14(2), 108–153. https://doi.org/10.1177/20412479231154924
Del-Valle, V., Hernández-Muñoz, P., Guarda, A., & Galotto, M. J. (2005). Development of a cactus-mucilage edible coating (Opuntia ficus indica) and its application to extend strawberry (Fragaria ananassa) shelf-life. Food Chemistry, 91(4), 751–756. https://doi.org/10.1016/j.foodchem.2004.07.002
Ghadiri Alamdari, N., Salmasi, S., & Almasi, H. (2021). Tomato Seed Mucilage as a New Source of Biodegradable Film-Forming Material: Effect of Glycerol and Cellulose Nanofibers on the Characteristics of Resultant Films. Food and Bioprocess Technology, 14(12), 2380–2400. https://doi.org/10.1007/s11947-021-02734-8
Gheribi, R., Habibi, Y., & Khwaldia, K. (2019). Prickly pear peels as a valuable resource of added-value polysaccharide: Study of structural, functional and film forming properties. International Journal of Biological Macromolecules, 126, 238–245. https://doi.org/10.1016/j.ijbiomac.2018.12.228
Gheribi, R., & Khwaldia, K. (2019). Cactus Mucilage for Food Packaging Applications. Coatings, 9(10), 655. https://doi.org/10.3390/coatings9100655
Ghosh, T., & Katiyar, V. (2018). Cellulose-Based Hydrogel Films for Food Packaging (pp. 1–25). https://doi.org/10.1007/978-3-319-76573-0_35-1
González Sandoval, D. C., Luna Sosa, B., Martínez-Ávila, G. C. G., Rodríguez Fuentes, H., Avendaño Abarca, V. H., & Rojas, R. (2019). Formulation and Characterization of Edible Films Based on Organic Mucilage from Mexican Opuntia ficus-indica. Coatings, 9(8), 506. https://doi.org/10.3390/coatings9080506
Ibrahim, N. I., Shahar, F. S., Sultan, M. T. H., Shah, A. U. M., Safri, S. N. A., & Mat Yazik, M. H. (2021). Overview of Bioplastic Introduction and Its Applications in Product Packaging. Coatings, 11(11), 1423. https://doi.org/10.3390/coatings11111423
López-Díaz, A. S., & Méndez-Lagunas, L. L. (2023). Mucilage-Based Films for Food Applications. Food Reviews International, 39(9), 6677–6706. https://doi.org/10.1080/87559129.2022.2123501
Makhloufi, N., Chougui, N., Rezgui, F., Benramdane, E., Silvestre, A. J. D., Freire, C. S. R., & Vilela, C. (2022). Polysaccharide-based films of cactus mucilage and agar with antioxidant properties for active food packaging. Polymer Bulletin, 79(12), 11369–11388. https://doi.org/10.1007/s00289-022-04092-7
Mannai, F., Mechi, L., Alimi, F., Alsukaibi, A. K. D., Belgacem, M. N., & Moussaoui, Y. (2023). Biodegradable composite films based on mucilage from Opuntia ficus-indica (Cactaceae): Microstructural, functional and thermal properties. International Journal of Biological Macromolecules, 252, 126456. https://doi.org/10.1016/j.ijbiomac.2023.126456
Martins, J. T., Cerqueira, M. A., Bourbon, A. I., Pinheiro, A. C., Souza, B. W. S., & Vicente, A. A. (2012). Synergistic effects between κ-carrageenan and locust bean gum on physicochemical properties of edible films made thereof. Food Hydrocolloids, 29(2), 280–289. https://doi.org/10.1016/j.foodhyd.2012.03.004
Mujtaba, M., Akyuz, L., Koc, B., Kaya, M., Ilk, S., Cansaran-Duman, D., Martinez, A. S., Cakmak, Y. S., Labidi, J., & Boufi, S. (2019). Novel, multifunctional mucilage composite films incorporated with cellulose nanofibers. Food Hydrocolloids, 89, 20–28. https://doi.org/10.1016/j.foodhyd.2018.10.021
Ncube, L. K., Ude, A. U., Ogunmuyiwa, E. N., Zulkifli, R., & Beas, I. N. (2021). An Overview of Plastic Waste Generation and Management in Food Packaging Industries. Recycling, 6(1), 12. https://doi.org/10.3390/recycling6010012
Olawuyi, I. F., & Lee, W. Y. (2022). Development and Characterization of Biocomposite Films Based on Polysaccharides Derived from Okra Plant Waste for Food Packaging Application. Polymers, 14(22), 4884. https://doi.org/10.3390/polym14224884
Otálora, M. C., Gómez Castaño, J. A., & Wilches-Torres, A. (2019). Preparation, study and characterization of complex coacervates formed between gelatin and cactus mucilage extracted from cladodes of Opuntia ficus-indica. LWT, 112, 108234. https://doi.org/10.1016/j.lwt.2019.06.001
Perez-Vazquez, A., Barciela, P., Carpena, M., & Prieto, M. A. (2023). Edible Coatings as a Natural Packaging System to Improve Fruit and Vegetable Shelf Life and Quality. Foods, 12(19), 3570. https://doi.org/10.3390/foods12193570
Puligundla, P., & Lim, S. (2022). A Review of Extraction Techniques and Food Applications of Flaxseed Mucilage. Foods, 11(12), 1677. https://doi.org/10.3390/foods11121677
Rohini, B., Padma Ishwarya, S., Rajasekharan, R., & VijayaKumar, A. K. (2020). Ocimum basilicum seed mucilage reinforced with montmorillonite for preparation of bionanocomposite film for food packaging applications. Polymer Testing, 87, 106465. https://doi.org/10.1016/j.polymertesting.2020.106465
Rudhziah, S., Rani, M. S. A., Ahmad, A., Mohamed, N. S., & Kaddami, H. (2015). Potential of blend of kappa-carrageenan and cellulose derivatives for green polymer electrolyte application. Industrial Crops and Products, 72, 133–141. https://doi.org/10.1016/j.indcrop.2014.12.051
Santos, C., Ramos, A., Luís, Â., & Amaral, M. E. (2023). Production and Characterization of k-Carrageenan Films Incorporating Cymbopogon winterianus Essential Oil as New Food Packaging Materials. Foods, 12(11), 2169. https://doi.org/10.3390/foods12112169
Santosh, P. (2017). Biosynthesis and Potential Screening of Butyrate Type of Polymer Obtained from Bacillus Megaterium. Modern Applications of Bioequivalence & Bioavailability, 2(5). https://doi.org/10.19080/MABB.2017.02.555597
Sepúlveda, E., Sáenz, C., Aliaga, E., & Aceituno, C. (2007). Extraction and characterization of mucilage in Opuntia spp. Journal of Arid Environments, 68(4), 534–545. https://doi.org/10.1016/j.jaridenv.2006.08.001
Tosif, M. M., Najda, A., Bains, A., Zawiślak, G., Maj, G., & Chawla, P. (2021). Starch–Mucilage Composite Films: An Inclusive on Physicochemical and Biological Perspective. Polymers, 13(16), 2588. https://doi.org/10.3390/polym13162588
Webber, V., Carvalho, S. M. de, Ogliari, P. J., Hayashi, L., & Barreto, P. L. M. (2012). Optimization of the extraction of carrageenan from Kappaphycus alvarezii using response surface methodology. Food Science and Technology, 32(4), 812–818. https://doi.org/10.1590/S0101-20612012005000111
Zhang, M., Biesold, G. M., Choi, W., Yu, J., Deng, Y., Silvestre, C., & Lin, Z. (2022). Recent advances in polymers and polymer composites for food packaging. Materials Today, 53, 134–161. https://doi.org/10.1016/j.mattod.2022.01.022