Extracción de ácido carmínico y electropolimerización: análisis espectroscópico UV-Vis
DOI:
https://doi.org/10.29057/icbi.v12iEspecial5.13688Palabras clave:
Ácido Carmínico, propiedades ópticas, electropolimerizaciónResumen
En este trabajo se reporta la extracción de ácido carmínico a partir de Dactylopius coccus tras una molienda preliminar, seguida de la obtención de un derivado mediante electropolimerización. El proceso fue monitoreado mediante espectroscopía UV-Vis. Los resultados indican que el producto obtenido presenta un bandgap de 1.6 eV, menor que el del ácido carmínico original, lo que sugiere un aumento en la conjugación de la molécula, indicando la posible formación de un nuevo polímero conjugado. Al someter el producto a calentamiento, se observó un cambio colorimétrico, acompañado de un bandgap de 1.9 eV. Este material podría ser de interés para su aplicación en la fotodegradación de contaminantes, como colorantes y fármacos en medios acuosos.
Descargas
Información de Publicación
Perfiles de revisores N/D
Declaraciones del autor
Indexado en
- Sociedad académica
- N/D
Citas
Akbar, A., Jabbar Siddiqui, A., Tarique Moin, S., Noman Khan, M., Raza, A., Khadim, A., Usman, M., Iqbal Choudhary, M., & Ghulam Musharraf, S. (2023). A rapid colorimetric method for the detection of carminic acid in samples based on visible color change. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 302. https://doi.org/10.1016/j.saa.2023.122953
Alizadeh, M., Demir, E., Aydogdu, N., Zare, N., Karimi, F., Kandomal, S. M., Rokni, H., & Ghasemi, Y. (2022). Recent advantages in electrochemical monitoring for the analysis of amaranth and carminic acid as food color. Food and Chemical Toxicology, 163. https://doi.org/10.1016/j.fct.2022.112929
Ansir, R., Shah, S. M., Ullah, N., & Hussain, M. N. (2020). Performance of pyrocatechol violet and carminic acid sensitized ZnO/CdS nanostructured photoactive materials for dye sensitized solar cell. Solid-State Electronics, 172(April), 107886. https://doi.org/10.1016/j.sse.2020.107886
Bayer, G., Shayganpour, A., Zia, J., & Bayer, I. S. (2022). Polyvinyl alcohol-based films plasticized with an edible sweetened gel enriched with antioxidant carminic acid. Journal of Food Engineering, 323. https://doi.org/10.1016/j.jfoodeng.2022.111000
Borges, M. E., Tejera, R. L., Díaz, L., Esparza, P., & Ibáñez, E. (2012). Natural dyes extraction from cochineal (Dactylopius coccus). New extraction methods. Food Chemistry, 132(4), 1855–1860. https://doi.org/10.1016/j.foodchem.2011.12.018
Brédas, J. L., Silbey, R., Boudreux, D. S., & Chance, R. R. (1983). Chain-Length Dependence of Electronic and Electrochemical Properties of Conjugated Systems: Polyacetylene, Polyphenyle, Polytiophene, and Polypyrrole. Journal of the American Chemical Society, 105(1982), 6555–6559. https://doi.org/10.1021/ja00360a004
Dai, C., & Liu, B. (2020). Conjugated polymers for visible-light-driven photocatalysis. In Energy and Environmental Science (Vol. 13, Issue 1, pp. 24–52). Royal Society of Chemistry. https://doi.org/10.1039/c9ee01935a
deSouzaGil, E., deOliveira, S. C. B., & deOliveira-Brett, A. M. (2012). Hydroxyanthraquinones carminic acid and chrysazin anodic oxidation. Electroanalysis, 24(11), 2079–2084. https://doi.org/10.1002/elan.201200433
Faiad Naief, M., & Naief, M. F. (2017). KINETIC AND THERMODYNAMIC STUDIES FOR OXIDATION OF CARMINIC ACID BY HYDROGEN PEROXIDE (Vol. 8, Issue 1). https://www.researchgate.net/publication/325392893
Ferreyra-Suarez, D., Paredes-Vargas, L., Jafari, S. M., García-Depraect, O., & Castro-Muñoz, R. (2024). Extraction pathways and purification strategies towards carminic acid as natural-based food colorant: A comprehensive review. In Advances in Colloid and Interface Science (Vol. 323). Elsevier B.V. https://doi.org/10.1016/j.cis.2023.103052
Fomo, G., Waryo, T., Feleni, U., Baker, P., & Iwuoha, E. (2019). Electrochemical Polymerization (pp. 105–131). https://doi.org/10.1007/978-3-319-95987-0_3
Fournier, F., de Viguerie, L., Balme, S., Janot, J. M., Walter, P., & Jaber, M. (2016). Physico-chemical characterization of lake pigments based on montmorillonite and carminic acid. Applied Clay Science, 130, 12–17. https://doi.org/10.1016/j.clay.2016.01.046
Gao, Y., Qin, Z., Guan, L., Wang, X., & Chen, G. Z. (2015). Organoaqueous calcium chloride electrolytes for capacitive charge storage in carbon nanotubes at sub-zero-temperatures. Chemical Communications, 51(54), 10819–10822. https://doi.org/10.1039/c5cc03048j
Gawȩda, S., Stochel, G., & Szaciłowski, K. (2008). Photosensitization and photocurrent switching in carminic acid/titanium dioxide hybrid material. Journal of Physical Chemistry C, 112(48), 19131–19141. https://doi.org/10.1021/jp804700d
Grande-Sánchez, S., Hernández-Ortiz, O. J., Muñoz-Pérez, F. M., Sausedo-Solorio, J. M., Ortega-Mendoza, J. G., Villagómez-Ibarra, J. R., Veloz-Rodríguez, M. A., Espinosa-Roa, A., Escalante, C. H., & Vázquez-García, R. A. (2022). Functionalization of carminic acid, the study of its electrochemical, linear, and nonlinear optical properties as a potential material for optoelectronic applications. Journal of Materials Science: Materials in Electronics, 33(9), 6226–6239. https://doi.org/10.1007/s10854-022-07797-7
Hammond, P. P. (2006). Hydrogen Bonding in Polymeric Structures 2-Dimensional Polymers Electrochemical Polymerization Multilayer Assembly. Synthesis, 77(7).
Inoue, K., Aikawa, S., & Fukushima, Y. (2018). Colorimetric chemosensor based on a carminic acid and Pb2+ complex for selective detection of cysteine over homocysteine and glutathione in aqueous solution. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 90(1–2), 105–110. https://doi.org/10.1007/s10847-017-0772-y
Iwai, S., Suzuki, T., Sakagami, H., Miyamoto, K., Chen, Z., Konishi, M., Villani, E., Shida, N., Tomita, I., & Inagi, S. (2022). Electropolymerization without an electric power supply. Communications Chemistry, 5(1). https://doi.org/10.1038/s42004-022-00682-8
Kosco, J., Bidwell, M., Cha, H., Martin, T., Howells, C. T., Sachs, M., Anjum, D. H., Gonzalez Lopez, S., Zou, L., Wadsworth, A., Zhang, W., Zhang, L., Tellam, J., Sougrat, R., Laquai, F., DeLongchamp, D. M., Durrant, J. R., & McCulloch, I. (2020). Enhanced photocatalytic hydrogen evolution from organic semiconductor heterojunction nanoparticles. Nature Materials, 19(5), 559–565. https://doi.org/10.1038/s41563-019-0591-1
Li, C. (2007). Construction of a novel sensor based on electropolymerization of carmine for voltammetric determination of 4‐nitrophenol. Journal of Applied Polymer Science, 103(5), 3271–3277. https://doi.org/10.1002/app.25489
Liu, S., Odate, A., Buscarino, I., Chou, J., Frommer, K., Miller, M., Scorese, A., Buzzeo, M. C., & Austin, R. N. (2017). An Advanced Spectroscopy Lab That Integrates Art, Commerce, and Science as Students Determine the Electronic Structure of the Common Pigment Carminic Acid. Journal of Chemical Education, 94(2), 216–220. https://doi.org/10.1021/acs.jchemed.6b00644
Manzoori, J. L., Sorouraddin, M. H., & Amjadi, M. (2000). Spectrophotometric determination of osmium based on its catalytic effect on the oxidation of carminic acid by hydrogen peroxide. In Talanta (Vol. 53). www.elsevier.com/locate/talanta
Mizuno, M., Tateno, H., Matsumura, Y., & Atobe, M. (2017). Synthesis and molecular weight control of poly(3-hexylthiophene) using electrochemical polymerization in a flow microreactor. Reaction Chemistry & Engineering, 2(5), 642–645. https://doi.org/10.1039/C7RE00089H
Munir, S., Shah, S. M., Hussain, H., & Siddiq, M. (2015). Adsorption of porphyrin and carminic acid on TiO2 nanoparticles: A photo-active nano-hybrid material for hybrid bulk heterojunction solar cells. Journal of Photochemistry and Photobiology B: Biology, 153, 397–404. https://doi.org/10.1016/j.jphotobiol.2015.10.029
Sakamaki, M., Aikawa, S., & Fukushima, Y. (2017). Colorimetric Determination of Pb2+ in Perfect Aqueous Solution Using Carminic Acid as a Selective Chemosensor. Journal of Fluorescence, 27(5), 1929–1935. https://doi.org/10.1007/s10895-017-2131-1
Scharber, M. C., & Sariciftci, N. S. (2021). Low Band Gap Conjugated Semiconducting Polymers. Advanced Materials Technologies, 6(4). https://doi.org/10.1002/admt.202000857
Sun, C., Li, Y., Song, P., & Ma, F. (2016). An experimental and theoretical investigation of the electronic structures and photoelectrical properties of ethyl red and carminic acid for DSSC application. Materials, 9(10), 1–22. https://doi.org/10.3390/ma9100813
Tkach, V. V., Martins, J. I. F. de P., Ivanushko, Y. G., & Yagodynets, P. I. (2022). Dye electropolymerization for electrochemical analysis. A brief review. In Biointerface Research in Applied Chemistry (Vol. 12, Issue 3, pp. 4028–4047). AMG Transcend Association. https://doi.org/10.33263/BRIAC123.40284047
Zhang, Q., Wang, X., Zeng, W., Xu, S., Li, D., Yu, S., & Zhou, J. (2023). De novo biosynthesis of carminic acid in Saccharomyces cerevisiae. Metabolic Engineering, 76, 50–62. https://doi.org/10.1016/j.ymben.2023.01.005
Ziyatdinova, G., Guss, E., & Budnikov, H. (2020). Amperometric sensor based on MWNT and electropolymerized carminic acid for the simultaneous quantification of TBHQ and BHA. Journal of Electroanalytical Chemistry, 859. https://doi.org/10.1016/j.jelechem.2020.113885
Ziyatdinova, G., Kozlova, E., & Budnikov, H. (2015). Electropolymerized Eugenol‐MWNT‐Based Electrode for Voltammetric Evaluation of Wine Antioxidant Capacity. Electroanalysis, 27(7), 1660–1668. https://doi.org/10.1002/elan.201400712
Zucchelli, M., Villarruel, F. D., David-Gara, P., Costante, M. R., Tascon, M., Marte, F., García Einschlag, F. S., & Cabrerizo, F. M. (2020). Photophysics and photochemistry of carminic acid and related natural pigments. Physical Chemistry Chemical Physics, 22(17), 9534–9542. https://doi.org/10.1039/d0cp01312a