Obtención de nanopartículas orgánicas estabilizadas mediante almidón de amaranto para su potencial uso en terapia fotodinámica

Autores/as

  • Fernanda Yedith Rodríguez-Hernández Universidad Autónoma del Estado de Hidalgo | Área Académica de Química | Pachuca de Soto-Hidalgo | México
  • Román Leyva-López Universidad Autónoma del Estado de Hidalgo | Área Académica de Química | Pachuca de Soto-Hidalgo | México https://orcid.org/0000-0002-0307-0325
  • Rosa Angeles Vázquez García Universidad Autónoma del Estado de Hidalgo | Área Académica de Química | Pachuca de Soto-Hidalgo | México https://orcid.org/0000-0001-6522-9859
  • Apolonio Vargas-Torres Universidad Autónoma del Estado de Hidalgo | Área Académica de Química | Pachuca de Soto-Hidalgo | México https://orcid.org/0000-0001-6664-1749
  • Oscar Javier Hernández Ortiz Universidad Autónoma del Estado de Hidalgo | Área Académica de Química | Pachuca de Soto-Hidalgo | México

DOI:

https://doi.org/10.29057/icbi.v12iEspecial5.13689

Palabras clave:

Amaranto, fotosensibilizador, terapia fotodinámica, almidón

Resumen

En el presente trabajo, se reporta la obtención de nanopartículas de un derivado de DPP estabilizadas mediante almidón de amaranto con potencial aplicación en terapia fotodinámica (PDT). El almidón se extrajo utilizando una solución alcalina de NaOH al 0.25% (p/v), con un tratamiento previo de secado a 40 °C durante 48 h. Las propiedades fisicoquímicas mostradas en el almidón fueron: humedad de 6.6±0.1%, capacidad de absorción de agua 269.1±15.0%, capacidad de absorción de aceite 195.7±6.1%, claridad de la pasta 83.45±0.89%. La fabricación de nanopartículas se realizó mediante reprecipitación de DPP-BisTPa en una solución saturada del almidón obteniéndose diámetros de partículas alrededor de 57 nm. Se evaluó la generación de especies reactivas de oxígeno (ROS) mediante la degradación de ácido úrico, demostrando que el almidón no interfiere en sus propiedades fotofísicas en las de generación de ROS. Por lo cual el almidón es un potencial biopolímero para encapsular fotosensibilizadores para PDT.

Descargas

Los datos de descargas todavía no están disponibles.

Información de Publicación

Metric
Este artículo
Otros artículos
Revisores por pares 
2.4 promedio

Perfiles de revisores  N/D

Declaraciones del autor

Declaraciones del autor
Este artículo
Otros artículos
Disponibilidad de datos 
N/A
16%
Financiamiento externo 
No
32% con financiadores
Intereses conflictivos 
N/D
11%
Metric
Para esta revista
Otras revistas
Artículos aceptados 
86%
33%
Días hasta la publicación 
94
145

Indexado en

Editor y comité editorial
perfiles
Sociedad académica 
N/D

Citas

Adebooye, O. C., & Singh, V. (2008). Physico-chemical properties of the flours and starches of two cowpea varieties (Vignaunguicu-lata (L.) Walp). Innovative Food Science and Emerging Technologies, 9, 92–100. htps://doi.org/10.1016/j.ifset.2007.06.003

Bello‐Pérez, L. A., Colonna, P., Roger, P., & Paredes‐López, O. (1998). Macromolecular features of amaranth starch. Cereal chemistry, 75(4), 395-402. htps://doi.org/10.1094/CCHEM.1998.75.4.395

Campelo, P. H., Sant’Ana, A. S., & Clerici, M. T. P. S. (2020). Starch nanoparticles: production methods, structure, and properties for food applications. Current Opinion in Food Science, 33, 136-140. htps://doi.org/10.1016/j.cofs.2020.04.007

Claver, I. P., Zhang, H., Li, Q., Kexue, Z., & Zhou, H. (2010). Optimization of ultrasonic extraction of polysaccharides from Chinese malted sorghum using response surface methodology. Pakistan Journal of nutrition, 9(4), 336-342. htps://doi.org/10.3923/pjn.2010.336.342

Das, D., Jha, S., & Kumar, K. J. (2015). Isolation and release characteristics of starch from the rhizome of Indian Palo. International journal of biological macromolecules, 72, 341-346. htps://doi.org/10.1016/j.ijbiomac.2014.08.009

Escalona Hernández, V., Padilla-Martínez, I. I., García, R. A. V., Rodríguez, M. A. V., & Hernández-Ortiz, O. J. (2024). Synthesis, and evaluation of photophysical properties of a potential DPP-derived photosensitizer for photodynamic therapy with D-A-D architecture. Journal of Materials Science: Materials in Medicine, 35(1), 11. htps://doi.org/10.1007/s10856-024-06776-0

Gunaydin, G., Gedik, M. E., & Ayan, S. (2021). Photodynamic Therapy for the Treatment and Diagnosis of Cancer–A Review of the Current Clinical Status. In Frontiers in Chemistry (Vol. 9). Frontiers Media S.A. htps://doi.org/10.3389/fchem.2021.686303

Hoover, R., & Ratnayake, W. S. (2001). Determination of total amylose content of starch. Current protocols in food analytical chemistry, (1), E2-3. htps://doi.org/10.1002/0471142913.fae0203s00

Jacobson MR, Obanni M, Bemiller JN (1997) Retrogradation of starches from different botanical sources. Cereal Chem 74(5):511–518. htps://doi.org/10.1094/CCHEM.1997.74.5.511

Kaur, A., Singh, N., Ezekiel, R., & Guraya, S. H. (2007). Physicochemical, thermal and pasting properties of starches separated from potato cultivars grown at different locations. Food Chemistry, 101, 643–651. htps://doi.org/10.1016/j.foodchem.2006.01.054

Kim, S., Ohulchanskyy, T. Y., Pudavar, H. E., Pandey, R. K., & Prasad, P. N. (2007). Organically mod silica nanoparticle co-encapsulating photosensitizing drug & aggregation-enhanced 2-photon absorbing fluorescent dye aggregate for TPA two-photon photodynamic therapy. Journal of the American Chemical Society, 129(9), 2669–2675. htps://doi.org/10.1021/ja0680257

Kong, X., Bao, J., & Corke, H. (2009). Physical properties of Amaranthus starch. Food Chemistry, 113(2), 371-376. htps://doi.org/10.1016/j.foodchem.2008.06.028

Konishi, Y., Nojima, H., Okuno, K., Asaoka, M., & Fuwa, H. (1985). Characterization of starch granules from waxy, nonwaxy, and hybrid seeds of Amaranthus hypochondriacus L. Agricultural and biological chemistry, 49(7), 1965-1971. htps://doi.org/10.1080/00021369.1985.10867018

Leach, H. W., McCowen, L. D., & Schoch, T. J. (1959). Structure of the starch granule. I. Swelling and solubility patterns of various starches. Cereal Chemistry, 36, 534–544.

Li, T., Hu, X., Fan, Q., Chen, Z., Zheng, Z., & Zhang, R. (2020). The novel DPP-BDT nanoparticles as efficient photoacoustic imaging and positron emission tomography agents in living mice. International Journal of Nanomedicine, 15, 5017–5026. htps://doi.org/10.2147/IJN.S238679

Lu, B., Zhang, Z., Ji, Y., Zhou, S., Jia, B., Zhang, Y., Wang, J., Ding, Y., Wang, Y., Yao, Y., & Zhan, X. (2022). Icing on the cake: combining a dual PEG-functionalized pillararene and an A-D-A small molecule photosensitizer for multimodal phototherapy. Science China Chemistry, 65(6), 1134–1141. htps://doi.org/10.1007/s11426-022-1232-9

McGrance, S. J., Cornell, H. J., & Rix, C. J. (1998). A simple and rapid colorimetric method for the determination of amylose in starch products. Starch‐Stärke, 50(4), 158-163. htps://doi.org/10.1002/(SICI)1521-379X(199804)50:4<158

Mérida-López, J., Rojas, C. C., Bergenståhl, B., & Purhagen, J. (2024). Functional properties of starch cultivars of two Andean grains grown in Bolivia: Amaranth (Amaranthus caudatus) and canihua (Chenopodium pallidicaule). Heliyon, 10(15). htps://doi.org/10.1016/j.heliyon.2024.e35140

Niculescu, A. G., & Grumezescu, A. M. (2021). Photodynamic therapy—an up-to-date review. Applied Sciences (Switzerland), 11(8), 1–18. htps://doi.org/10.3390/app11083626

Nikzamir, M., Hanifehpour, Y., Akbarzadeh, A., & Panahi, Y. (2021). Applications of Dendrimers in Nanomedicine and Drug Delivery: A Review. Journal of Inorganic and Organometallic Polymers and Materials, 31(6), 2246–2261. htps://doi.org/10.1007/s10904-021-01925-2

Olaru, A. M., Marin, L., Morariu, S., Pricope, G., Pinteala, M., & Tartau-Mititelu, L. (2018). Biocompatible chitosan based hydrogels for potential application in local tumour therapy. Carbohydrate Polymers, 179(September 2017), 59–70. htps://doi.org/10.1016/j.carbpol.2017.09.066

Rostamabadi, H., Falsafi, S. R., & Jafari, S. M. (2019). Starch-based nanocarriers as cutting-edge natural cargos for nutraceutical delivery. Trends in Food Science & Technology, 88, 397-415. htps://doi.org10.1016/j.tifs.2019.04.004

Rui, L. L., Cao, H. L., Xue, Y. D., Liu, L. C., Xu, L., Gao, Y., & Zhang, W. A. (2016). Functional organic nanoparticles for photodynamic therapy. Chinese Chemical Letters, 27(8), 1412–1420. htps://doi.org/10.1016/j.cclet.2016.07.011

Sandhu, K. S., & Singh, N. (2007). Some properties of corn starches II. Physicochemical, gelatinization, retrogradation, pasting and gel textural properties. Food Chemistry, 101, 1499–1507. htps://doi.org/10.1016/j.foodchem.2006.01.060

Shi, J., Kantoff, P. W., Wooster, R., & Farokhzad, O. C. (2017). Cancer nanomedicine: Progress, challenges and opportunities. Nature Reviews Cancer, 17(1), 20–37. htps://doi.org/10.1038/nrc.2016.108

Sindhu, R., Devi, A., & Khatkar, B. S. (2021). Morphology, structure and functionality of acetylated, oxidized and heat moisture treated amaranth starches. Food Hydrocolloids, 118, 106800. htps://doi.org/10.1016/j.foodhyd.2021.106800

Trejo-Santillan, I., Mendoza-Guevara, C. C., Ramos-Godinez, M. D. P., & Ramon-Gallegos, E. (2022). Synthesis of Chitosan Nanoparticles Conjugated with Protoporphyrin IX and Vitamin B9 for Their Application in Photodynamic Therapy. IEEE Transactions on Nanobioscience, 21(4), 490–495. htps://doi.org/10.1109/TNB.2021.3137276

Vauthier, C., & Ponchel, G. (2016). Polymer Nanoparticles for Nanomedicines. htps://doi.org/10.1007/978-3-319-41421-8

Villarreal, M. E., Ribotta, P. D., & Iturriaga, L. B. (2012). Comparing methods for extracting Amaranthus starch and the properties of the isolated starches. LWT – Food Science and Technology, 51, 441–447. htps://doi.org/10.1016/j.lwt.2012.11.009

Wang, L., & Wang, Y. J. (2004). Rice starch isolation by neutral protease and high intensity ultrasound. Journal of Cereal Science, 39, 291–296. htps://doi.org/10.1016/j.jcs.2003.11.002

Wang, X., Huang, L., Zhang, C., Deng, Y., Xie, P., Liu, L., & Cheng, J. (2020). Research advances in chemical modifications of starch for hydrophobicity and its applications: A review. Carbohydrate polymers, 240, 116292. htps://doi.org/10.1016/j.carbpol.2020.116292

Wang, X., Zhong, X., Liu, Z., & Cheng, L. (2020). Recent progress of chemodynamic therapy-induced combination cancer therapy. In Nano Today (Vol. 35). Elsevier B.V. htps://doi.org/10.1016/j.nantod.2020.100946

Xie, Z., Yu, M., Shuai, X., Zheng, X., Wang, Y., Liu, S., He, H., & Zheng, M. (2018). Diketopyrrolopyrrole-based carbon dots for photodynamic therapy. Nanoscale, 10(23), 10991–10998. htps://doi.org/10.1039/c8nr02643b

Yang, F., Shi, K., Jia, Y. peng, Hao, Y., Peng, J. rong, & Qian, Z. yong. (2020). Advanced biomaterials for cancer immunotherapy. In Acta Pharmacologica Sinica (Vol. 41, Issue 7, pp. 911–927). Springer Nature. htps://doi.org/10.1038/s41401-020-0372-z

Zhu, F. (2017). Structures, physicochemical properties, and applications of amaranth starch. Critical reviews in food science and nutrition, 57(2), 313-325. htps://doi.org/10.1080/10408398.2013.862784

Descargas

Publicado

2024-12-13

Cómo citar

Rodríguez-Hernández, F. Y. ., Leyva-López, R. ., Vázquez García, R. A., Vargas-Torres, A., & Hernández Ortiz, O. J. (2024). Obtención de nanopartículas orgánicas estabilizadas mediante almidón de amaranto para su potencial uso en terapia fotodinámica . Pädi Boletín Científico De Ciencias Básicas E Ingenierías Del ICBI, 12(Especial5), 161–167. https://doi.org/10.29057/icbi.v12iEspecial5.13689

Número

Sección

Artículos de investigación