Obtención de nanopartículas y micropartículas orgánicas fluorescentes estabilizadas con almidón de amaranto para su potencial aplicación en bioimagen

Autores/as

  • Thamara Iturbide-Pichardo Universidad Autónoma del Estado de Hidalgo | Área Académica de Química | Pachuca de Soto-Hidalgo | México https://orcid.org/0009-0008-3260-020X
  • Oscar Javier Hernández Ortiz Universidad Autónoma del Estado de Hidalgo | Área Académica de Química | Pachuca de Soto-Hidalgo | México https://orcid.org/0000-0002-5805-9035
  • Apolonio Vargas-Torres Universidad Autónoma del Estado de Hidalgo | Instituto de Ciencias Agropecuarias | Tulancingo de Bravo-Hidalgo | México. https://orcid.org/0000-0001-6664-1749
  • Rosa Angeles Vázquez García Área Académica de Ciencias de la Tierra y Materiales, Universidad Autónoma del Estado de Hidalgo, Ciudad del Conocimiento, Carretera Pachuca- Hidalgo Km 4.5, Colonia Carboneras, Mineral de la Reforma, Hidalgo, 42184, México https://orcid.org/0000-0001-6522-9859
  • Josué Esaú Muñoz-Pérez División de Posgrado, Universidad Politécnica de Tulancingo. Calle Ingenierías # 100, Huapalcalco, 43629 Tulancingo de Bravo, Hidalgo, 42184, México https://orcid.org/0000-0003-4205-2151
  • Román Leyva-López Universidad Autónoma del Estado de Hidalgo | Instituto de Ciencias Agropecuarias | Tulancingo de Bravo-Hidalgo | México. https://orcid.org/0000-0002-0307-0325

DOI:

https://doi.org/10.29057/icbi.v12iEspecial5.13690

Palabras clave:

Amaranto, fluorescencia, bioimagen, almidón

Resumen

En este trabajo se reporta la extracción de almidón a partir de amaranto por un método convencional y su empleo como estabilizador de nanoagregados de derivados de bisquinolinas (BQ1 y BQ2). Las propiedades fisicoquímicas mostradas en el almidón aislado fueron: capacidad de retención de agua 205.6% ± 6.1%, capacidad de absorción de aceite 208.4% ± 3.6%, claridad de la pasta 92.7% ± 0.99%. Se obtuvieron nano y microagregados de BQ1 y BQ2 estabilizados con almidón con diámetros mínimos aproximados de 296 y 68 nm respectivamente obtenidos por DLS. El almidón no afecta a las propiedades fotofísicas de emisión inducida por agregación ni la respuesta no lineal de los compuestos. Por lo que el almidón extraído del amaranto puede ser un biopolímero para la encapsulación de potenciales agentes de contraste para bioimagen.

Descargas

Los datos de descargas todavía no están disponibles.

Información de Publicación

Metric
Este artículo
Otros artículos
Revisores por pares 
2.4 promedio

Perfiles de revisores  N/D

Declaraciones del autor

Declaraciones del autor
Este artículo
Otros artículos
Disponibilidad de datos 
N/A
16%
Financiamiento externo 
No
32% con financiadores
Intereses conflictivos 
N/D
11%
Metric
Para esta revista
Otras revistas
Artículos aceptados 
86%
33%
Días hasta la publicación 
80
145

Indexado en

Editor y comité editorial
perfiles
Sociedad académica 
N/D

Citas

Belfield, K. D., Yao, S., & Bondar, M. V. (2008). Two-photon absorbing photonic materials: From fundamentals to applications. Advances in Polymer Science, 213(1), 97–156. https://doi.org/10.1007/12_2007_126

Bhattacharjee, S. (2016). DLS and zeta potential - What they are and what they are not? In Journal of Controlled Release (Vol. 235, pp. 337–351). Elsevier B.V. https://doi.org/10.1016/j.jconrel.2016.06.017

Campelo, P. H., Sant’Ana, A. S., & Pedrosa Silva Clerici, M. T. (2020). Starch nanoparticles: production methods, structure, and properties for food applications. Current Opinion in Food Science, 33, 136–140. https://doi.org/10.1016/j.cofs.2020.04.007

Cao, D., Liu, Z., Verwilst, P., Koo, S., Jangjili, P., Kim, J. S., & Lin, W. (2019). Coumarin-Based Small-Molecule Fluorescent Chemosensors [Review-article]. Chemical Reviews, 119(18), 10403–10519. https://doi.org/10.1021/acs.chemrev.9b00145

Chen, L., Ma, R., McClements, D. J., Zhang, Z., Jin, Z., & Tian, Y. (2019). Impact of granule size on microstructural changes and oil absorption of potato starch during frying. Food Hydrocolloids, 94, 428-438. https://doi.org/10.1016/j.foodhyd.2019.03.046

Chen, L., Ma, R., Zhang, Z., Huang, M., Cai, C., Zhang, R., McClements D. J., Tian, Y. & Jin, Z. (2019). Comprehensive investigation and comparison of surface microstructure of fractionated potato starches. Food Hydrocolloids, 89, 11-19. https://doi.org/10.1016/j.foodhyd.2018.10.017

Esquivel-González, O., Vázquez-García, R. A., Veloz-Rodríguez, M. A., Muñoz-Pérez, J. E., Rueda-Soriano, E., & Hernández-Ortiz, O. J. (2023). Synthesis, photophysical properties and nonlinear response of a bisquinoline A-D-A with aggregation-induced emission for potential application in optoelectronic devices. Chemical Physics Impact, 7. https://doi.org/10.1016/j.chphi.2023.100398

Grzybowski, M., Hugues, V., Blanchard-Desce, M., & Gryko, D. T. (2014). Two-Photon-Induced Fluorescence in New π-Expanded Diketopyrrolopyrroles. Chemistry - A European Journal, 20(39), 12493–12501. https://doi.org/10.1002/chem.201402569

Hahn, M. A., Singh, A. K., Sharma, P., Brown, S. C., & Moudgil, B. M. (2011). Nanoparticles as contrast agents for in-vivo bioimaging: Current status and future perspectives. In Analytical and Bioanalytical Chemistry (Vol. 399, Issue 1, pp. 3–27). https://doi.org/10.1007/s00216-010-4207-5

Han, Y., Bai, L., Lin, J., Ding, X., Xie, L., & Huang, W. (2021). Diarylfluorene-Based Organic Semiconductor Materials toward Optoelectronic Applications. Advanced Functional Materials, 2105092, 1–28. https://doi.org/10.1002/adfm.202105092

Hickey, P. C., Swift, S. R., Roca, M. G., & Read, N. D. (2004). Live-cell Imaging of Filamentous Fungi Using Vital Fluorescent Dyes and Confocal Microscopy (pp. 63–87). https://doi.org/10.1016/S0580-9517(04)34003-1

Islas-Rodríguez, N., Muñoz, R., Vázquez-García, R. A., Rodríguez, J. A., Reyes-Pérez, M., & Hernández-Ortiz, O. J. (2023). Selective colorimetric detection of cysteine based on phenylvinylbisquinoline for its potential implementation in optoelectronic sensors. Journal of Materials Science: Materials in Electronics, 34(13). https://doi.org/10.1007/s10854-023-10538-z

Kim, S., Ohulchanskyy, T. Y., Pudavar, H. E., Pandey, R. K., & Prasad, P. N. (2007). Organically mod silica nanoparticle co-encapsulating photosensitizing drug & aggregation-enhanced 2-photon absorbing fluorescent dye aggregate for TPA two-photon photodynamic therapy. Journal of the American Chemical Society, 129(9), 2669–2675. https://doi.org/10.1021/ja0680257

Kumar, A., & Dixit, C. K. (2017). Methods for characterization of nanoparticles. In Advances in Nanomedicine for the Delivery of Therapeutic Nucleic Acids (pp. 43–58). Elsevier. https://doi.org/10.1016/B978-0-08-100557-6.00003-1

Lei, T., Wang, J. Y., & Pei, J. (2014). Design, synthesis, and structure-property relationships of isoindigo-based conjugated polymers. Accounts of Chemical Research, 47(4), 1117–1126. https://doi.org/10.1021/ar400254j

Li, H., Kim, H., Han, J., Nguyen, V. N., Peng, X., & Yoon, J. (2021). Activity-based smart AIEgens for detection, bioimaging, and therapeutics: Recent progress and outlook. In Aggregate (Vol. 2, Issue 4). John Wiley and Sons Inc. https://doi.org/10.1002/agt2.51

Li, H., Kim, H., Zhang, C., Zeng, S., Chen, Q., Jia, L., Wang, J., Peng, X., & Yoon, J. (2022). Mitochondria-targeted smart AIEgens: Imaging and therapeutics. In Coordination Chemistry Reviews (Vol. 473). Elsevier B.V. https://doi.org/10.1016/j.ccr.2022.214818

Li, M., Daygon, V. D., Solah, V., & Dhital, S. (2023). Starch granule size: Does it matter?. Critical Reviews in Food Science and Nutrition, 63(19), 3683-3703. https://doi.org/10.1080/10408398.2021.1992607

Li, W., Wang, L., Tang, H., & Cao, D. (2019). Diketopyrrolopyrrole-based fluorescent probes for detection and bioimaging: Current progresses and perspectives. In Dyes and Pigments (Vol. 162, pp. 934–950). Elsevier Ltd. https://doi.org/10.1016/j.dyepig.2018.11.023

Luo, Y., Wang, T. T. Y., Teng, Z., Chen, P., Sun, J., & Wang, Q. (2013). Encapsulation of indole-3-carbinol and 3,3′-diindolylmethane in zein/carboxymethyl chitosan nanoparticles with controlled release property and improved stability. Food Chemistry, 139(1–4), 224–230. https://doi.org/10.1016/j.foodchem.2013.01.113

Mahmoudi Najafi, S. H., Baghaie, M., & Ashori, A. (2016). Preparation and characterization of acetylated starch nanoparticles as drug carrier: Ciprofloxacin as a model. International Journal of Biological Macromolecules, 87, 48–54. https://doi.org/10.1016/j.ijbiomac.2016.02.030

Majumder, R., Dey, S., Jana, D., & Ghorai, B. K. (2023). Donor-acceptor cyanostilbene based nano-AIEgens: Synthesis and properties. Results in Chemistry, 5. https://doi.org/10.1016/j.rechem.2023.100856

Maningat, C. C., Seib, P. A., Bassi, S. D., Woo, K. S., & Lasater, G. D. (2009). Wheat starch: production, properties, modification and uses. In Food Science and Technology, Starch (Third Edition), (pp. 441-510). Academic Press. https://doi.org/10.1016/B978-0-12-746275-2.00010-0

Mohammadi, S., Alimi, M., Shahidi, S. A., & Shokoohi, S. (2022). Physicochemical and functional properties of modified amaranth starch with adipic acid and acetic anhydride mixture. Journal of food science and technology (Iran), 19(130), 197-212. https://doi.org/10.22034/FSCT.19.130.197

Montaseri, H., Kruger, C. A., & Abrahamse, H. (2020). Review: Organic nanoparticle based active targeting for photodynamic therapy treatment of breast cancer cells. In Oncotarget (Vol. 11, Issue 22). www.oncotarget.com

Morán, D., Gutiérrez, G., Blanco-López, M. C., Marefati, A., Rayner, M., & Matos, M. (2021). Synthesis of starch nanoparticles and their applications for bioactive compound encapsulation. Applied Sciences (Switzerland), 11(10). https://doi.org/10.3390/app11104547

Murad, A. R., Iraqi, A., Aziz, S. B., Abdullah, S. N., & Brza, M. A. (2020). Conducting polymers for optoelectronic devices and organic solar cells: A review. Polymers, 12(11), 1–47. https://doi.org/10.3390/polym12112627

Neumann, P. R., Erdmann, F., Holthof, J., Hädrich, G., Green, M., Rao, J., & Dailey, L. A. (2021). Different PEG-PLGA Matrices Influence In Vivo Optical/Photoacoustic Imaging Performance and Biodistribution of NIR-Emitting π-Conjugated Polymer Contrast Agents. Advanced Healthcare Materials, 10(4). https://doi.org/10.1002/adhm.202001089

Pawlicki, M., Collins, H. A., Denning, R. G., & Anderson, H. L. (2009). Two-photon absorption and the design of two-photon dyes. Angewandte Chemie - International Edition, 48(18), 3244–3266. https://doi.org/10.1002/anie.200805257

Pham, T. C., Lee, D. J., Kim, D. H., Yoon, J., Lam, T. D., Kim, H. M., & Lee, S. (2023). Imidazole-carbazole conjugate for two-photon-excited photodynamic therapy and fluorescence bioimaging. Chemical Communications, 59(30), 4503–4506. https://doi.org/10.1039/d3cc00108c

Prieto-Montero, R., Prieto-Castañeda, A., Sola-Llano, R., Agarrabeitia, A. R., García-Fresnadillo, D., López-Arbeloa, I., Villanueva, A., Ortiz, M. J., de la Moya, S., & Martínez-Martínez, V. (2020). Exploring BODIPY Derivatives as Singlet Oxygen Photosensitizers for PDT. Photochemistry and Photobiology, 96(3), 458–477. https://doi.org/10.1111/php.13232

Putro, J. N., Ismadji, S., Gunarto, C., Soetaredjo, F. E., & Ju, Y. H. (2020). A study of anionic, cationic, and nonionic surfactants modified starch nanoparticles for hydrophobic drug loading and release. Journal of Molecular Liquids, 298, 112034. https://doi.org/10.1016/j.molliq.2019.112034

Scharber, M. C., & Sariciftci, N. S. (2021). Low Band Gap Conjugated Semiconducting Polymers. Advanced Materials Technologies, 6(4). https://doi.org/10.1002/admt.202000857

Shang, K., Xu, C., Cao, Z., Cui, M., Sun, J., Xiao, H., Zhang, L., Wang, Y., & Han, H. (2024). Polymer-based delivery systems with metal complexes as contrast agents for medical imaging. In Coordination Chemistry Reviews (Vol. 518). Elsevier B.V. https://doi.org/10.1016/j.ccr.2024.216071

Shao, W., Yang, C., Li, F., Wu, J., Wang, N., Ding, Q., Gao, J., & Ling, D. (2020). Molecular Design of Conjugated Small Molecule Nanoparticles for Synergistically Enhanced PTT/PDT. Nano-Micro Letters, 12(1). https://doi.org/10.1007/s40820-020-00474-6

Sharath Kumar, K. S., Girish, Y. R., Ashrafizadeh, M., Mirzaei, S., Rakesh, K. P., Hossein Gholami, M., Zabolian, A., Hushmandi, K., Orive, G., Kadumudi, F. B., Dolatshahi-Pirouz, A., Thakur, V. K., Zarrabi, A., Makvandi, P., & Rangappa, K. S. (2021). AIE-featured tetraphenylethylene nanoarchitectures in biomedical application: Bioimaging, drug delivery and disease treatment. In Coordination Chemistry Reviews (Vol. 447). Elsevier B.V. https://doi.org/10.1016/j.ccr.2021.214135

So, P. T. (2001). Two-photon Fluorescence Light Microscopy. ELS, 1–5. https://doi.org/10.1038/npg.els.0002991

Torres, F. G., & De-la-Torre, G. E. (2022). Synthesis, characteristics, and applications of modified starch nanoparticles: A review. International Journal of Biological Macromolecules, 194, 289–305. https://doi.org/10.1016/j.ijbiomac.2021.11.187

Trejo-Santillan, I., Mendoza-Guevara, C. C., Ramos-Godinez, M. D. P., & Ramon-Gallegos, E. (2022). Synthesis of Chitosan Nanoparticles Conjugated with Protoporphyrin IX and Vitamin B9 for Their Application in Photodynamic Therapy. IEEE Transactions on Nanobioscience, 21(4), 490–495. https://doi.org/10.1109/TNB.2021.3137276

Troncoso, O. P., & Torres, F. G. (2020). Non‐conventional starch nanoparticles for drug delivery applications. MEDICAL DEVICES & SENSORS, 3(6). https://doi.org/10.1002/mds3.10111

Uddin, M. N., Ahmed, S. S., & Alam, S. M. R. (2020). REVIEW: Biomedical applications of Schiff base metal complexes. In Journal of Coordination Chemistry (Vol. 73, Issue 23, pp. 3109–3149). Taylor and Francis Ltd. https://doi.org/10.1080/00958972.2020.1854745

Wang, J., Gu, B., Wang, H. T., & Ni, X. W. (2010). Z-scan analytical theory for material with saturable absorption and two-photon absorption. Optics Communications, 283(18), 3525–3528. https://doi.org/10.1016/j.optcom.2010.05.007

Wu, P. T., Kim, F. S., Champion, R. D., & Jenekhe, S. A. (2008). Conjugated Donor - Acceptor copolymer semiconductors. Synthesis, optical properties, electrochemistry, and field-effect carrier mobility of pyridopyrazine-based copolymers. Macromolecules, 41(19), 7021–7028. https://doi.org/10.1021/ma801348b

Yan, F., Zhang, C., Zheng, Y., Mei, L., Tang, L., Song, C., Sun, H., & Huang, L. (2010). The effect of poloxamer 188 on nanoparticle morphology, size, cancer cell uptake, and cytotoxicity. Nanomedicine: Nanotechnology, Biology, and Medicine, 6(1), 170–178. https://doi.org/10.1016/j.nano.2009.05.004

Zhang, X., Zhang, X., Yang, B., Hui, J., Liu, M., Liu, W., Chen, Y., & Wei, Y. (2014). PEGylation and cell imaging applications of AIE based fluorescent organic nanoparticles via ring-opening reaction. Polymer Chemistry, 5(3), 689–693. https://doi.org/10.1039/c3py01272g

Zhang, Y., Fang, F., Li, L., & Zhang, J. (2020). Self-Assembled Organic Nanomaterials for Drug Delivery, Bioimaging, and Cancer Therapy. In ACS Biomaterials Science and Engineering (Vol. 6, Issue 9, pp. 4816–4833). American Chemical Society. https://doi.org/10.1021/acsbiomaterials.0c00883

Zhao, X., Bagwe, R. P., & Tan, W. (2004). Development of organic-dye-doped silica nanoparticles in a reverse microemulsion. Advanced Materials, 16(2), 173–176. https://doi.org/10.1002/adma.200305622

Zhou, H., Yang, L., & You, W. (2012). Rational Design of High Performance Conjugated Polymers for Organic Solar Cells. Macromolecules, 45, 607–632. https://doi.org/10.1021/ma201648t

Descargas

Publicado

2024-11-29

Cómo citar

Iturbide-Pichardo , T., Hernández Ortiz, O. J., Vargas-Torres, A., Vázquez García, R. A., Muñoz-Pérez, J. E., & Leyva-López, R. . (2024). Obtención de nanopartículas y micropartículas orgánicas fluorescentes estabilizadas con almidón de amaranto para su potencial aplicación en bioimagen. Pädi Boletín Científico De Ciencias Básicas E Ingenierías Del ICBI, 12(Especial5), 168–177. https://doi.org/10.29057/icbi.v12iEspecial5.13690

Número

Sección

Artículos de investigación