Estructuras tipo origami en el desarrollo de biomateriales inteligentes a partir de impresión 4D

Autores/as

DOI:

https://doi.org/10.29057/icbi.v12iEspecial5.13703

Palabras clave:

Manufactura aditiva, Biomateriales, Origami, Impresión 3D, Ingeniería de tejidos

Resumen

La manufactura aditiva tiene un gran potencial en el campo de los biomateriales por su capacidad para desarrollar diseños intrincados y complejos. Este estudio presenta una revisión sobre el papel de la manufactura aditiva en la creación de estructuras tipo origami para desarrollar biomateriales inteligentes a partir de biopolímeros con capacidad de respuesta ante estímulos externos (impresión 4D). Desde la década de 1990, la ingeniería de tejidos ha dependido en gran medida de andamios, siendo los biomateriales un punto clave para promover la adhesión celular, la proliferación y la diferenciación, integrando la biología celular con la ciencia de los materiales. La impresión 4D constituye una solución ante las limitaciones de los andamios convencionales. Esta tecnología innovadora permite la integración de estructuras tipo origami, con cambio de forma como una respuesta ante estímulos, lo cual incrementa el potencial de crear biomateriales dinámicos, plegables y receptivos, abriendo nuevas vías en la ingeniería de tejidos y la medicina regenerativa.

Descargas

Los datos de descargas todavía no están disponibles.

Información de Publicación

Metric
Este artículo
Otros artículos
Revisores por pares 
2.4 promedio

Perfiles de revisores  N/D

Declaraciones del autor

Declaraciones del autor
Este artículo
Otros artículos
Disponibilidad de datos 
N/A
16%
Financiamiento externo 
No
32% con financiadores
Intereses conflictivos 
N/D
11%
Metric
Para esta revista
Otras revistas
Artículos aceptados 
86%
33%
Días hasta la publicación 
94
145

Indexado en

Editor y comité editorial
perfiles
Sociedad académica 
N/D

Citas

Ahmed, A. R., Gauntlett, O. C., & Camci-Unal, G. (2021). Origami-Inspired Approaches for Biomedical Applications. ACS Omega, 6, 46−54. doi:https://dx.doi.org/10.1021/acsomega.0c05275?ref=pdf

Ahmed, A., Arya, S., Gupta, V., Furukawa, H., & Khosla, A. (2021). 4D printing: Fundamentals, materials, applications and challenges. Polymer, 228, 123926. doi:10.1016/j.polymer.2021.123926

Amukarimi, S., Rezvani, Z., Eghtesadi, N., & Mozafari, M. (2022). Smart biomaterials: From 3D printing to 4D bioprinting. Methods, 205, 191-199. doi:10.1016/j.ymeth.2022.07.006

Ananth , P. K., & Jayram, D. N. (2024). A comprehensive review of 3D printing tecniques for biomaterial-based scaffold fabrication in bone tissue engineering. Annals of 3D Printed Medicine, 13, 100141. doi:10.1016/j.stlm.2023.100141

Arif, Z. U., Khalid, M. Y., Noroozi, R., Hossain, M., Shi, H. H., Tariq, A., . . . Umer, R. (2023). Additive manufacturing of sustainable biomaterials for biomedical applications. Asian Journal of Pharmaceutical Sciences, 18, 100812. doi:10.1016/j.ajps.2023.100812

Arif, Z. U., Khalid, M. Y., Noroozi, R., Hossain, M., Shi, H. H., Tariq, A., . . . Umer, R. (2023). Additive manufacturing of sustainable biomaterials for biomedical applications. Asian Journal of Pharmaceutical Sciences, 18, 100812. doi:10.1016/j.ajps.2023.100812

Arif, Z. U., Khalid, M. Y., Noroozi, R., Sadeghianmaryan, A., Jalalvand, M., & Hossain, M. (2022). Recent advances in 3D-printed polylactide and polycaprolactone-based biomaterials for tissue engineering applications. International Journal of Biological Macromolecules, 218(0141-8130), 930-968. doi:10.1016/j.ijbiomac.2022.07.140

Arif, Z. U., Khalid, M. Y., Zolfagharian, A., & Bodaghi, M. (2022). 4D bioprinting of smart polymers for biomedical applicattions: recent progress, challenges, and future perspectives. Reactive and Functional Polymers, 179, 105374. doi:https://doi.org/10.1016/j.reactfunctpolym.2022.105374

Castro-Aguirre , E., Iñiguez-Franco , F., Samsudin , H., Fang, X., & Auras, R. (2016). Poly(lactic acid)—Mass production, processing, industrial applications, and end of life. Advanced Drug Delivery Reviews, 107, 333-366. doi:10.1016/j.addr.2016.03.010

Cui, X., Zhang, J., Qian, Y., Chang, S., Allardyce, B. J., Rajkhowa, R., . . . Zhang, K.-Q. (2024). 3D Printing Strategies for Precise and Functional Assembly of Silk-based Biomaterial. Engineering, 92-108. doi:https://doi.org/10.1016/j.eng.2023.09.022

Ding, A., Lee, S. J., Ayyagari, S., Tang, R., Huynh, C. T., & Alsberg, E. (2022). 4D biofabrication via instantly generated graded hydrogel scaffolds. Bioactive Materials, 7, 324-332. doi:https://doi.org/10.1016/j.bioactmat.2021.05.021

Fattah-alhosseini, A., Chaharmahali, R., Alizad, S., Kaseem, M., & Dikici, B. (2024). A review of smart polymeric materials: Recent developments and prospects for medicine applications. Hybrid Advances, 5, 100178. doi:https://doi.org/10.1016/j.hybadv.2024.100178

Frazer , L. (2007). Radical Departure: Polymerization Does More With Less. Environmental Health Perspectives, 115, A258-A261. doi:10.1289/ehp.115-a258

Georgakopoulos, S. V., Zekios, C. L., Sattar-Kaddour, A., Hamza, M., Biswas, A., & Clark, B. (2021). Origami Antennas. IEEE Open Journal of Antennas and Propagation, 2, 1020-1043. doi:doi: 10.1109/OJAP.2021.3121102

Georgakopoulos, S., Zekios, C., Sattar Kaddour, A., Hamza, M., Biswas, A., & Clark, B. (2021). Origami Antennas. IEEE Open Journal of Antennas and Propagation, 2, 1020-1043. doi:10.1109/OJAP.2021.3121102

Huang, Y., & Ding , Z. (2024). Biomaterials for cardiovascular diseases. Biomedical Technology, 7(2949-723X), 1-14. doi:10.1016/j.bmt.2024.05.001

Ibrahim, S., Riahi , O., M., S., F.M., M., F.M., S., Rozali, S., & Rozali, S. (2019). Biopolymers From Crop Plants. Materials Science and Materials Engineering. doi:10.1016/B978-0-12-803581-8.11573-5

Jong-Eun, S., Jae-Hung, H., & Tae-Hyun, K. (2020). New approach to foliding a thing walled Yoshimura patterned cylinder. Aerospace Research Central. doi:10.2514/1.A34784

Khouri, N. G., Bahu, J. O., Blanco-Llamero, C., Severino, P., Concha, V. O., & Souto, E. B. (2024). Polylactic acid (PLA): Properties, synthesis, and biomedical applications – A review of the literature. Journal of Molecular Structure, 1309, 138243. doi:10.1016/j.molstruc.2024.138243

Kidambi , N., & Wang, K. W. (June de 2020). Dynamics of Kresling Origami deployment. Phys. Rev. E, 101, 063003. doi:10.1103/PhysRevE.101.063003

Ko, K., F., Wan, & Yuqin. (2014). Fundamentals of polymers. Cambrigde: Cambridge University Press. Obtenido de https://www.cambridge.org/core/books/introduction-to-nanofiber-materials/5177AA2C3D6AB3FE1474ADC15E3F16AB

Kshirsagar , M., & Kandasubraman, B. (2024). Origami fabrication techniques for enhanced fiber reinforced composites: A review. Hybrid Advances, 7, 100274. doi:10.1016/j.hybadv.2024.100274

Kshirsagar, M., Ambike, S. D., Prakash, N. J., Kandasubramanian , B., & Deshpande , P. (2023). Origami engineering: Creating dynamic functional materials through folded structures. Hybrid Advances, 4, 100092. doi:10.1016/j.hybadv.2023.100092

Kshirsagar, M., D. Ambike, S., Jaya Prakash, N., Kandasubramanian, B., & Deshpande, P. (2023). Origami engineering: Creating dynamic functional materials through folded structures. Hybrid Advances, 4(2773-207X), 100092. doi:10.1016/j.hybadv.2023.100092

Kuhn, W., Hargitay, B., Katchalsky, A., & Eisenberg, H. (1950). Reversible dilation and contraction by changing the state of ionization of high-polymer acid networks. Nature, 165, 514-516. doi:10.1038/165514a0

Manivannan, K. R., Sharma, N., Kumar, V., Jayaraj, I., Vimal, S., & Umesh, M. (2024). A comprehensive review on natural macromolecular biopolymers for biomedical applications: Recent advancements, current challenges, and future outlooks. Carbohydrate Polymer Technologies and Applications, 8, 100536. doi:https://doi.org/10.1016/j.carpta.2024.100536

McLellan, K., Sun, Y. C., & Naguib, H. E. (2022). A review of 4D printing: Materials, structures, and designs towards the printing of biomedical wearable devices. Bioprinting, 27, e00217. doi:10.1016/j.bprint.2022.e00217

Montoya, C., Roldan, L., Yu, M., Valliani, S., Ta, C., Yang, M., & Orrego, S. (2023). Smart dental materials for antimicrobial applications. Bioactive Materials, 24, 1-19. doi:https://doi.org/10.1016/j.bioactmat.2022.12.002

Naghib, S. M., Hosseini, S. N., & Beigi, A. (2024). 3D/4D printing of chitosan-based materials for wound healing with chitosan-based materials, which provide a fresh method for creating customized scaffolds and wound dressings applications. Carbohydrate Polymer Technologies and Applications, 100594. doi:https://doi.org/10.1016/j.carpta.2024.100594

Norouzi, S., Saveh Shemshaki, N., Latifi, M., Azimi, B., Danti, S., Qiao, X., . . . Bagherzadeh, R. (2024). Recent advances in biomaterials for tissue-engineered constructs: Essential factors and engineering techniques. Materials Today Chemistry, 37, 102016. doi:https://doi.org/10.1016/j.mtchem.2024.102016

O´Meara, S. (March de 2019). How biomaterials will support China’s ageing population. Nature, SP. doi:doi: https://doi.org/10.1038/d41586-019-00888-2

Rahmatabadi, D., Khajepour, M., Bayati, A., Mirasadi, K., Yousefi, M. A., Shegeft, A., . . . Baghani, M. (2024). Advancing sustainable shape memory polymers through 4D printing of polylactic acid-polybutylene adipate terephthalate blends. European Polymer Journal, 216, 113289. doi:https://doi.org/10.1016/j.eurpolymj.2024.113289

Randall, C. L., Gultepe, E., & Gracias, D. H. (2012). Self-folding devices and materials for biomedical applications. Trends in Biotechnology, 30, 138-146. doi:10.1016/j.tibtech.2011.06.013

Sajjad, R., Chauhdary, S. T., Anwar, M. T., Zahid, A., Khosa, A. A., Imran, M., & Sajjad, M. H. (2024). Areview of 4D printing e Technologies, shape shifting, smart polymer based materials, and biomedical applications. Advanced Industrial and Engineering Polymer Research, 7, 20-36. doi: https://doi.org/10.1016/j.aiepr.2023.08.002

Sedláková, V., Mourcos, S., Pupkaité, J., Lunn, Y., Visintini, S., Guzman-Soto, I., . . . Alarcon, E. I. (2024). Biomaterials for direct cardiac repair—A rapid scoping review 2012–2022. Acta Biomaterialia, 180, 61-81. doi:https://doi.org/10.1016/j.actbio.2024.04.008

Sui, C., Chen, J., & Wenjie, J. (2024). A review of derivate structures of the Miura-Ori. Theoretical and Natural Science, 43, 120-132. doi:10.54254/2753-8818/43/20241067

Wang, M., Hong, Y., Fu, X., & Sun, X. (2024). Advances and applications of biomimetic biomaterials for endogenous skin regeneration. Bioactive Materials, 39, 492-520. doi:https://doi.org/10.1016/j.bioactmat.2024.04.011

Yang, C., Blum, N. T., Lin, J., Qu, J., & Huang, P. (2020). Biomaterial scaffold-based local drug delivery systems for cancer immunotherapy. Science Bulletin, 65, 1489-1504.

Zhao, Y., Endo, Y., Kanamori, Y., & Mitani, J. (2018). Approximating 3D surfaces using generalized waterbomb tessellations. Journal of Computational Design and Engineering, 6, 442-448. doi:10.1016/j.jcde.2018.01.002

Descargas

Publicado

2024-12-13

Cómo citar

Cira-Esquivel, J. I., Martínez-Hernández, A. L., López-Marín, L. M., Velasco-Santos, C. ., & Toscano-Giles, J. A. (2024). Estructuras tipo origami en el desarrollo de biomateriales inteligentes a partir de impresión 4D. Pädi Boletín Científico De Ciencias Básicas E Ingenierías Del ICBI, 12(Especial5), 224–232. https://doi.org/10.29057/icbi.v12iEspecial5.13703

Número

Sección

Artículos de investigación