Calidad de Cu3N según la temperatura de depósito
DOI:
https://doi.org/10.29057/icbi.v12iEspecial5.13704Palabras clave:
Cu3N, película delgada, erosion catódica, temperaturaResumen
El nitruro de cobre (Cu3N) es un material prometedor en aplicaciones como la microelectrónica y energías renovables, donde su optimización depende de entender cómo las condiciones de depósito afectan sus propiedades. En este estudio se utilizó la técnica de erosión catódica reactiva para depositar películas delgadas de Cu3N a temperaturas desde ambiente hasta 300 °C y se analizaron sus propiedades estructurales, ópticas y eléctricas mediante las técnicas de XRD, espectrofotometría VIS-NIR y efecto Hall, respectivamente. Se observó que la resistividad disminuye y la movilidad de portadores aumenta con la temperatura, alcanzando valores característicos de los metales a 300 °C. A esta temperatura, se evidencia una descomposición parcial del Cu3N en cobre metálico, lo que se refleja en una baja transmitancia y picos que identifican al Cu en difracción de rayos x. Estos resultados sugieren que ajustar la temperatura de depósito puede modificar las propiedades optoelectrónicas de las películas de Cu3N, lo que es relevante para el desarrollo de dispositivos semiconductores.
Descargas
Información de Publicación
Perfiles de revisores N/D
Declaraciones del autor
Indexado en
- Sociedad académica
- N/D
Citas
Alaneme, K. K., Okotete, E. A., (2019). Recrystallization mechanisms and microstructure development in emerging metallic materials: A review. Journal of science: Advanced materials and devices, 4(1), 19-33. DOI: 10.1016/j.jsamd.2018.12.007
Ali, T. H., Tanveer, Z., Javed, M. R., Mahmood, K., Amin, N., Ikram, S., Ali, A., Rehan, M., Gilani, H. S., Arif Sajjad, M., Yusuf, M., (2021). A new approach for the growth of copper nitrides thin films by thermal evaporation using nitrogen as source gas. Optik 245, 167666. DOI: 10.1016/j.ijleo.2021.167666
Asano, M., Umeda, K., Tasaki, A., (1985). Cu3N Thin Film for a New Light Recording Media. Japanese Journal of Applied Physics 29. DOI: 10.1143/JJAP.29.1985
Bhattacharyya, S. R., Gayen, R. N., Paul, R., Pal, A. K. (2009). Determination of optical constants of thin films from transmittance trace. Thin Solid Films, 517(18), 5530-5536. DOI: 10.1016/j.tsf.2009.03.168
Borsa, D. M., Boerma, D. O., (2004). Growth, structural and optical properties of Cu3N films. Surface Science 548(1-3), 95 – 105. DOI: 10.1016/j.susc.2003.10.053
Cho, S., (2012). Effect of substrate temperature on the properties of copper nitride thin films deposited by reactive magnetron sputtering. Current Applied Physics, 12, S44-S47. DOI: 10.1016/j.cap.2012.05.033
Davey, W. P. (1925). Precision measurements of the lattice constants of twelve common metals. Physical Review, 25(6), 753. DOI: 10.1103/PhysRev.25.753
Fan X. Y., Wu, Z. G., Zhang, G. A., Li, C., Geng, B. S., Li, H. J., Yan, P. X., (2007). Ti-doped copper nitride films deposited by cylindrical magnetron sputtering. Journal of alloys and compounds, 440(1-2), 254-258. DOI: 10.1016/j.jallcom.2006.09.006
Gabriel, C. J., Nedoluha, A. (1971). Transmittance and reflectance of systems of thin and thick layers. Optica Acta: International Journal of Optics, 18(6), 415-423. DOI: 10.1080/713818456
Ghosh, S., Singh, F., Choudhary, D., Avasthi, D. K., Ganesan, V., Shah, P., Gupta, A., (2001). Effect of substrate temperature on the physical properties of copper nitride films by rf reactive sputtering. Surface and Coatings Technology, 142, 1034-1039. DOI: 10.1016/S0257-8972(01)01091-X
Hadian, F., Rahmati, A., Movla, H., Khaksar, M., (2012). Reactive DC magnetron sputter deposited copper nitride nano-crystalline thin films: Growth and characterization. Vacuum, 86(8), 1067-1072. DOI: 10.1016/j.vacuum.2011.09.001
Huang, K. E., Logé, R. E., (2016). A review of dynamic recrystallization phenomena in metallic materials. Materials & Design, 111, 548-574. DOI: 10.1016/j.matdes.2016.09.012
Jiang, A., Qi, M., Xiao, J., (2018). Preparation, structure, properties, and application of copper nitride (Cu3N) thin films: A review. Journal of Materials Science & Technology 34, 1467–1473. DOI: 10.1016/j.jmst.2018.02.025
Keil, T. H. (1966). Theory of the Urbach rule. Physical Review, 144(2), 582. DOI: 10.1103/PhysRev.144.582
Kim, K. J., Kim, J. H., Kang, J. H., (2001). Structural and optical characterization of Cu3N films prepared by reactive RF magnetron sputtering. Journal of Crystal Growth, 222(4), 767-772. DOI: 10.1016/S0022-0248(00)00968-4
Li, X. A., Bai, Q., Yang, J., Li, Y., Wang, L., Wang, H., Shanling, R., Shengli, L., Huang, W. (2013). Effect of N2-gas flow rates on the structures and properties of copper nitride films prepared by reactive DC magnetron sputtering. Vacuum, 89, 78-81. DOI: 10.1016/j.vacuum.2011.10.020
Li, X. A., Yang, J. P., Zuo, A. Y., Yuan, Z. B., Liu, Z. L., Yao, K. L., (2009). Study on La-doped copper nitride films prepared by reactive magnetron sputtering. Journal of Materials Science & Technology 25(2), 233e6. https://www.jmst.org/CN/Y2009/V25/I02/233
Majumder, S., Ohishi, M., Saito, K., Guo, Q., Patwary, M. A. M., Tanaka, T., (2024). Effect of substrate temperature and position on properties of Cu3N thin films deposited by reactive radio frequency magnetron sputtering. Materials Science in Semiconductor Processing, 182, 108702. DOI: 10.1016/j.mssp.2024.108702
Márquez, E., Blanco, E., García-Gurrea, M., Cintado Puerta, M., Domínguez de la Vega, M., Ballester, M., Mánuel, J. M., Rodríguez-Tapiador M. I., Fernández, S. M., (2023). Optical properties of reactive RF magnetron sputtered polycrystalline Cu3N thin films determined by UV/visible/NIR spectroscopic ellipsometry: An eco-friendly solar light absorber. Coatings, 13(7), 1148. DOI: 10.3390/coatings13071148
Maruyama, T., Morishita, T., (1995). Copper nitride thin films prepared by radio‐frequency reactive sputtering. Journal of Applied Physics, 78(6), 4104-4107. DOI: 10.1063/1.359868
Matula, R. A., (1979). Electrical resistivity of copper, gold, palladium, and silver. Journal of Physical and Chemical Reference Data, 8(4), 1147-1298. DOI: 10.1063/1.555614
Matsuzaki, K., Harada, K., Kumagai, Y., Koshiya, S., Kimoto, K., Ueda, S., Sasase, M., Maeda A., Susaki, T., Kitano, M., Oba, F., Hosono, H., (2018). High‐Mobility p‐Type and n‐Type Copper Nitride Semiconductors by Direct Nitriding Synthesis and In Silico Doping Design. Advanced Materials, 30(31), 1801968. DOI: 10.1002/adma.201801968
Meymian, M. R. Z., Heravi, A. D., Mehr, A. K., (2020). Influence of bias voltage on optical and structural characteristics of Cu3N films deposited by reactive RF magnetron sputtering in a pure nitrogen atmosphere. Materials Science in Semiconductor Processing, 112, 104995. DOI: 10.1016/j.mssp.2020.104995
Moreno-Armenta, M. G., Pérez, W. L., Takeuchi, N., (2007). First-principles calculations of the structural and electronic properties of Cu3MN compounds with M= Ni, Cu, Zn, Pd, Ag, and Cd. Solid state sciences, 9(2), 166-172. DOI: 10.1016/j.solidstatesciences.2006.12.002
Nosaka, T., Yoshitake, M., Okamoto, A., Ogawa, S., Nakayama, Y., (1999). Copper nitride thin films prepared by reactive radio-frequency magnetron sputtering. Thin Solid Films 348(1-2), 8 – 13. DOI: 10.1016/S0040-6090(98)01776-3
Park, Jae-Min, Jin, K., Han, B., Kim, J. M., Jung, J., Kim, J. J., Lee, Won-Jun, (2014). Atomic layer deposition of copper nitride film and its application to copper seed layer for electrodeposition. Thin Solid Films 556, 434 – 439. DOI: 10.1016/j.tsf.2014.01.034
Patterson, A. L., (1939). The Scherrer formula for X-ray particle size determination. Physical review, 56(10), 978. DOI: 10.1103/PhysRev.56.978
Pierson, J. F., Horwat, D., (2008). Addition of silver in copper nitride films deposited by reactive magnetron sputtering. Scripta Materialia, 58(7), 568-570. DOI: 10.1016/j.scriptamat.2007.11.016
Rodríguez-Tapiador, M. I., Asensi, J. M., Roldán, M., Merino, J., Bertomeu, J., Fernández, S. (2023a). Copper nitride: a versatile semiconductor with great potential for next-generation photovoltaics. Coatings, 13(6), 1094. DOI: 10.3390/coatings13061094
Rodríguez-Tapiador, M. I., Jiménez-Suárez, A., Lama, A., Gordillo, N., Asensi, J. M., Del Rosario, G., Merino, J., Bertomeu, J., Agarwal, A., Fernández, S., (2023b). Effects of Deposition Temperature and Working Pressure on the Thermal and Nanomechanical Performances of Stoichiometric Cu3N: An Adaptable Material for Photovoltaic Applications. Nanomaterials, 13(22), 2950. DOI: 10.3390/nano13222950
Sakalley, S., Saravanan, A., Cheng, W. C., Chen, S. C., Sun, H., Liao, M. H., Huang, B. R., (2023). Cu3N thin film synthesized by selective in situ substrate heating during high power impulse magnetron sputtering for augmenting UV photodetection. Sensors and Actuators A: Physical, 350, 114137. DOI: 10.1016/j.sna.2022.114137
Soto, G., Díaz, J. A., de la Cruz, W., (2003). Copper nitride films produced by reactive pulsed laser deposition. Materials Letters 57(26-27) 4130 – 4133. DOI: 10.1016/S0167-577X(03)00277-5
Soukup, L., Šı, M., Fendrych, F., Jastrabı, L., Hubička, Z., Chvostová, D., H Šı〔chová, H., Valvoda, V., Tarasenko, A., Studnička, V., Wagner, T., Novák, M., (1999). Copper nitride thin films prepared by the RF plasma chemical reactor with low pressure supersonic single and multi-plasma jet system. Surface and Coatings Technology, 116, 321-326. DOI: 10.1016/S0257-8972(99)00129-2
Tauc, J. (1968). Optical properties and electronic structure of amorphous Ge and Si. Materials research bulletin, 3(1), 37-46. DOI: 10.1016/0025-5408(68)90023-8
Timoshenko, J., Anspoks, A., Kalinko, A., Kuzmin, A., (2017). Thermal disorder and correlation effects in anti-perovskite-type copper nitride. Acta Materialia, 129, 61-71. DOI: 10.1016/j.actamat.2017.02.074
Wang, J., Chen, J. T., Yuan, X. M., Wu, Z. G., Miao, B. B., Yan, P. X., (2006). Copper nitride (Cu3N) thin films deposited by RF magnetron sputtering. Journal of Crystal Growth 286, 407-412. DOI: 10.1016/j.jcrysgro.2005.10.107
Xiao, J. R., Xu, H., Li, Y. F., Li, M. J., (2007). Effect of nitrogen pressure on structure and optical band gap of copper nitride thin films. Acta Physica Sinica 56, 4169–4174. DOI: 10.7498/aps.56.4169
Xiao, J., Li, Y., Jiang, A., (2011). Structure, optical property and thermal stability of copper nitride films prepared by reactive radio frequency magnetron sputtering. Journal of Materials Science & Technology 27(5), 403 – 407. DOI: 10.1016/S1005-0302(11)60082-0
Yue, G. H., Yan, P. X., Liu, J. Z., Wang, M. X., Li, M., Yuan, X. M., (2005). Copper nitride thin film prepared by reactive radio-frequency magnetron sputtering. Journal of Applied Physics 98, 103506. DOI: 10.1063/1.2132507
Zhao, Y., Zhang, Q., Huang, S., Zhang, J., Ren, S., Wang, H., Wang, L., Yang, T., Yang, J., Li, X. A., (2016). Effect of magnetic transition metal (TM= V, Cr, and Mn) dopant on characteristics of copper nitride. Journal of Superconductivity and Novel Magnetism, 29, 2351-2357. DOI: 10.1007/s10948-016-3511-5