Textil funcional-inteligente para detección de CO a temperatura ambiente
DOI:
https://doi.org/10.29057/icbi.v12iEspecial5.13708Palabras clave:
sensor, CO, textil inteligente, PANI, Co3O4Resumen
En este trabajo se propone el uso de un textil electrónico (e-Textil) para sensar CO a temperatura ambiente (RT). Se realizó la polimerización de la anilina por medio de la oxidación química, agregando nanopartículas de Co3O4 y secciones de poliéster. Tanto los textiles como los compositos en polvo, se caracterizaron por MEB, DRX, FTIR y eléctricamente. Imágenes de electrones retrodispersados, muestran la dispersión de aglomerados de nanopartículas de Co3O4 en una matriz de polianilina (PANI), sobre la superficie de las fibras de poliéster; los resultados de DRX confirman la presencia de la PANI y la fase espinela de óxido de cobalto. Por FTIR se observan las bandas características de la PANI cuya intensidad aumenta con el contenido de Co3O4. Al exponer los textiles funcionalizados al gas CO en flujo dinámico a RT, se observó que la muestra T-Pani-5br mostró la señal más intensa con tiempos de respuesta y recuperación de 160 y 69 segundos respectivamente.
Descargas
Información de Publicación
Perfiles de revisores N/D
Declaraciones del autor
Indexado en
- Sociedad académica
- N/D
Citas
Adak, B., Mukhopadhyay, S. (Eds.). (2023). Smart and functional textiles. Walter de Gruyter GmbH, Berlin/Boston.
Adler, R. G. (1991). Carbon monoxide in workplace atmospheres. Salt Lake City, Utah: OSHA.
Al-Gharram, M., AlZoubi, T. (2024). Electrochemical synthesis of a novel hybrid nanocomposite based on Co3O4 nanoparticles embedded in PANI-camphor sulfonic Acid matrix for optoelectronic applications. Ceramics International, 50, 5473-5482. https://doi.org/10.1016/j.ceramint.2023.11.300
Aswal, D., Gupta, S. K. (Eds.). (2007). Science and technology of chemiresistor gas sensors. New York: Nova Science Publishers, Inc.
Bai, H., Shi, G. (2007). Gas sensors based on conducting polymers. Sensors, 7, 267-307.
Bhadra, S., Khastgir, D. (2008). Determination of crystal structure of polyaniline and substituted polyanilines through X-ray diffraction analysis. Polymer Testing, 27, 851-857. https://doi.org/10.1016/j.polymertesting.2008.07.002
Environmental protection agency. (2023). Calidad del aire interior. Monóxido de carbono. https://espanol.epa.gov/cai/monoxido-de-carbono
Fratoddi, I., Venditti, I., Cametti, C., Russo, M. V. (2015). Chemiresistive polyaniline-based gas sensors: A mini review. Sensors and Actuators B: Chemical, 220, 534-548. https://doi.org/10.1016/j.snb.2015.05.107
Hageman, G., Van-Broekhuizen, P., Nihom, J. (2024). The role of carbon monoxide in aerotoxic syndrome. Neurotoxicology, 100, 107-116. https://doi.org/10.1016/j.neuro.2023.12.008
Hai, Z., Gao, L., Zhang, Q., Xu, H., Cui, D., Zhang, Z., Tsoukalas, D., Tang, J., Yan, S., Xue, C. (2016). Facile synthesis of core-shell structured PANI-Co3O4 nanocomposites with superior electrochemical performance in supercapacitors. Applied Surface Science, 361, 57-62. https://dx.doi.org/10.1016/j.apsusc.2015.11.171
He, Y., Jiao, M. (2024). A mini-review on metal oxide semiconductor gas sensors for carbon monoxide detection at room temperature. Chemosensors, 12(4), 55. https://doi.org/10.3390/chemosensors12040055
Kellenberger, A., Dmitrieva, E., Dunsch, L. (2011). The stabilization of charged states at phenazine-like units in polyaniline under p-doping: an in-situ ATR-FTIR spectroeletrochemical study. Phys.Chem.Chem.Phys, 13, 3411-3420. https://doi.org/10.1039/c0cp01264e
Khalili, S., Majidi, M., Bahrami, M., Roshanaei, M., Madrakian, T., Afkhami, A. (2024). A portable gas sensor based on In2O3@CuO P-N heterojunction connected via wi-fi to a smartphone for real-time carbon monoxide determination. Scientific Reports, 14, 13594. https://doi.org/10.1038/s41598-024-64534-2
Koncar, V. (2019). Smart textiles for in situ monitoring of composites. The Textile Institute Book Series, Elsevier Ltd.
Kumar, H., Luthra, M., Punia, M., Singh, R. M. (2021). Co3O4/PANI nanocomposites as a photocatalytic, antibacterial and anticorrosive agent: experimental and theoretical approach. Colloid and Interface Science Communications, 45, 1-14. https://doi.org/10.1016/j.colcom.2021.100512
Mahadeva., Inamdar, H. K., Ashwajeet, J. S., Sridhar, Chakradhar. (2022). Desing of Co3O4/Polyaniline nanostructures for structural and electrical research. Neuro Quantology, 20, 581-585. https://doi.org/10.14704/NQ.2022.20.13.NQ88076
Nandapure, B., Kondawar, S., Salunkhe, M., Nandapure, A. (2013). Nanostructure cobalt oxide reinforced conductive and magnetic polyaniline nanocomposites. Journal of Composite Materials, 47, 559-567. https://doi.org/10.1177/0021998312442559
Ou, L., Liu, M., Zhu, L., Zhang, D. W., Lu, H. (2022). Recent progress on flexible room temperature gas sensors based on metal oxide semiconductor. Review Nano-Micro Letters, 14, 1-42. https://doi.org/10.1007/s40820-022-00956-9
Patnaik, S. (2020). Smart textiles and recent developments. En A. Patnaik (Ed.), fibres to smart textiles: advances in manufacturing, technologies, and applications (pp.331-340). Textile Instituto Professional Publications Series.
Peng, J., Feng, W., Yang, X., Huang, G., Liu, S. (2019). Dual fabry-pérot Interferometric carbon monoxide sensor based on the PANI/Co3O4 sensitive membrane–coated fibre tip. De Gruyter, 74, 101-107. https://doi.org/10.1515/zna-2018-0453
Quan, L., Sun, J., Bai, S., Luo, R., Li, D., Chen, A., Liu, C. C. (2017). A flexible sensor based on polyaniline hybrid using ZnO as template and sensing properties to triethylamine at room temperature. Applied Surface Science, 399, 583-591.
Salthammer, T. (2024). Carbon monoxide as an indicator of indoor air quality. Environmental Science: Atmospheres, 4, 291-305. https://doi.org/10.1039/d4ea00006d
Secretaría de Salud (SSA). (1993). NOM-021-SSA1-1993: Criterio para evaluar la calidad del aire ambiente con respecto al monóxido de carbono (co). valor permisible para la concentración de monóxido de carbono (co) en el aire ambiente como medida de protección a la salud de la población. Ciudad de México: SSA.
Sen, T., Shimpi, N. G., Mishra, S. (2016). Room temperature CO sensing by polyaniline/Co3O4 nanocomposite. Journal of Applied Polymer Science, 42, 8-8. https://doi.org/10.1002/app.44115
Song, E., Choi, J.W. (2013). Conducting polyaniline nanowire and its applications in chemiresistive sensing. Nanomaterials, 3, 498-523. https://doi.org/10.3390/nano3030498
Tang, M., Zhang, D., Sun, Y., Chen, Q., Chen, Y., Xi, G., Wang, Z., Shao, X. (2024). CVD-fabricated Co3O4-Co3S4 heterojunction for ultra-sensitive detection of CO in SF6 discharge decomposition products. Sensors and Actuators: B. Chemical, 401, 1-14. https://doi.org/10.1016/j.snb.2023.134968
Wang, J., Xiao, G., Zhang, T., Hao, S., Jia, Z., Li, Y. (2021). Fabrication of Co3O4/polyaniline-based carbon electrode for high-performance supercapacitor. Journal of Alloys and Compoundas, 863, 1-8. https://doi.org/10.1016/j.jallcom.2020.158071
Wong, Y. C., Ang, B. C., Haseeb, A. S. M. A., Baharuddin, A. A., Wong, Y. H. (2020). Review-conducting polymers as chemiresistive gas sensing materials: a review. Journal of The Electrochemical Society, 167, 1-16. https://doi.org/10.1149/2.0032003JES
Yan, Y., Yang, G., Xu, J., Zhang, M., Kuo, C., Wang, S. (2020). Conducting polymer-inorganic nanocomposite-based gas sensors: a review. Science and Technology of Advanced Materials, 21, 768-786. https://doi.org/10.1080/14686996.2020.1820845
Zhou, Y., Li, Z. (Eds.) (2023). Smart textile and polymer materials. MDPI, st. Alban-Anlage 66.
Zhu, C., Cakmak, U., Sheikhnejad, O., Cheng, X., Zhang, X., Xu, Y., Gao, S., Zhao, H., Huo, L., Major, Z. (2019). One step synthesis of PANI/Fe2O3 nanocomposites and flexible film for enhanced NH3 sensing performance at room temperature. Nanotechnology, 30, 7pp. https://doi.org/10.1088/1361-6528/ab076e