Síntesis de NPs-FeO y su aplicación en Celdas de combustible Microbianas Sedimentarias
DOI:
https://doi.org/10.29057/icbi.v12iEspecial5.13715Palabras clave:
Ánodo, Cátodo, Nanopartícula, FeO, Síntesis Verde, SMFCResumen
En este trabajo se sintetizaron nanopartículas de óxido de hierro (NPs-FeO) a partir de las hojas del extracto acuso de Cymbopogon citratus usando química verde. Posteriormente, las NPs-FeO fueron esparcidas sobre fieltro de carbón por la técnica de aerografía para después utilizarse como cátodo o como bioánodo. El electrodo con NPs-FeO fue colonizado con bacterias para finalmente utilizarse como bioánodo en una celda de combustible microbiana sedimetaria (SMFC, por sus siglas en ingles). Las propiedades cristalográficas, morfológicas y minerales de las NPs sintetizadas, se determinaron a través del análisis XRD, SEM y EDS. Los resultados revelaron que las NPs, presentan una estructura cristalina amorfo, con una superficie altamente porosa y una alta concentración de hierro. Se realizaron análisis de voltamperometría cíclica antes y después del crecimiento microbiano. Las pruebas en la celda de combustible microbiana sedimentaria mostraron producciones de energía de 1.46 W/m2 al emplearse el electrodo con NPs-FeO como ánodo y 0.59 W/m2 al emplearse como cátodo
Descargas
Información de Publicación
Perfiles de revisores N/D
Declaraciones del autor
Indexado en
- Sociedad académica
- N/D
Citas
Aleman‐Ramirez, J. L., Okoye, P. U., Torres‐Arellano, S., & Sebastian, P. J. (2024). Challenges and prospects in energetic application of Pithecellobium dulce (Roxb.) Benth as a bioenergy tree. Biofuels, Bioproducts and Biorefining, 18(5), 1658–1675. https://doi.org/10.1002/bbb.2601
Basak, S., Ali, S., Mondal, M., Roy, D., Dutta, A., Kumar, A., Sikdar, S., & Roy, M. N. (2021). Green synthesis and characterization of heterostructure MnO-FeO nanocomposites to study the effect on oxidase enzyme mimicking, HSA binding interaction and cytotoxicity. Chemical Physics Letters, 785, 139163. https://doi.org/10.1016/j.cplett.2021.139163
Batool, S., Hasan, M., Dilshad, M., Zafar, A., Tariq, T., Wu, Z., Chen, R., Gul Hassan, S., Munawar, T., Iqbal, F., Saqib Saif, M., Waqas, M., & Shu, X. (2022). Green synthesis of Cordia myxa incubated ZnO, Fe2O3, and Co3O4 nanoparticle: Characterization, and their response as biological and photocatalytic agent. Advanced Powder Technology, 33(11), 103780. https://doi.org/10.1016/j.apt.2022.103780
Bautista-Guzman, J., Gomez-Morales, R., Asmat-Campos, D., & Checca, N. R. (2021). Influence of the Alcoholic/Ethanolic Extract of Mangifera indica Residues on the Green Synthesis of FeO Nanoparticles and Their Application for the Remediation of Agricultural Soils. Molecules, 26(24), 7633. https://doi.org/10.3390/molecules26247633
Bharathi, D., Ranjithkumar, R., Vasantharaj, S., Chandarshekar, B., & Bhuvaneshwari, V. (2019). Synthesis and characterization of chitosan/iron oxide nanocomposite for biomedical applications. International Journal of Biological Macromolecules, 132, 880–887. https://doi.org/10.1016/j.ijbiomac.2019.03.233
Chatterjee, A., Mridha, D., Banerjee, J., Chanda, S., Ray, K., Acharya, K., Das, M., Roychowdhury, T., & Sarkar, J. (2021). Green synthesis of iron oxide nanoparticles and their ameliorative effect on arsenic stress relief in Oryza sativa seedlings. Biocatalysis and Agricultural Biotechnology, 38, 102207. https://doi.org/10.1016/j.bcab.2021.102207
Dinakarkumar, Y., Rajabathar, J. R., AL-Lohedan, H., Venkatesan, D., Sankaran, K., Veera, H. M., & Ramakrishnan, G. (2024). Inhibition of Vibrio parahaemolyticus biofilm formation in Squid (Loligo duvauceli) meat by Cymbopogon citratus essential oil and DNase: An investigative study. Food and Humanity, 3, 100392. https://doi.org/10.1016/j.foohum.2024.100392
Doğan, B., Yeşilyurt, M. K., Yaman, H., Korkmaz, N., & Arslan, A. (2024). Green synthesis of SiO2 and TiO2 nanoparticles using safflower (Carthamus tinctorius L.) leaves and investigation of their usability as alternative fuel additives for diesel-safflower oil biodiesel blends. Fuel, 367, 131498. https://doi.org/10.1016/j.fuel.2024.131498
Dülger, B., Özkan, G., Angı, O. S., & Özkan, G. (2024). Green synthesis of TiO2 nanoparticles using Aloe Vera extract as catalyst support material and studies of their catalytic activity in dehydrogenation of Ethylenediamine Bisborane. International Journal of Hydrogen Energy, 75, 466–474. https://doi.org/10.1016/j.ijhydene.2024.02.223
Falcon, R. M. G., Fahrenbach, S. U., Feliciano, J. F., Flores, B. M. B., Dida-Agun, A. S., Domingo, E. J. V., Domingo, F. K. S., Duran, H. E. T., Dungala, D. B., Dychiao, G. R. K., Evangelista, P. E. D., Facon, H. E. L., FlorCruz, F. E. R., Florita, M. H. B., Giron, M. S. T., & Yabes, A. M. (2024). Antifungal properties of Cymbopogon citratus (DC.) Stapf—A scoping review. South African Journal of Botany, 170, 425–442. https://doi.org/10.1016/j.sajb.2024.05.042
Fan, Z., Li, J., Yang, W., Fu, Q., Sun, K., Song, Y.-C., Wei, Z., Liao, Q., & Zhu, X. (2020). Green and facile synthesis of iron oxide nanoparticle-embedded N-doped biocarbon as an efficient oxygen reduction electrocatalyst for microbial fuel cells. Chemical Engineering Journal, 385, 123393. https://doi.org/10.1016/j.cej.2019.123393
Franco, R. T., Silva, A. L., Licea, Y. E., Serna, J. D. P., Alzamora, M., Sánchez, D. R., & Carvalho, N. M. F. (2021). Green Synthesis of Iron Oxides and Phosphates via Thermal Treatment of Iron Polyphenols Synthesized by a Camellia sinensis Extract. Inorganic Chemistry, 60(8), 5734–5746. https://doi.org/10.1021/acs.inorgchem.0c03794
Gupta, S., Patro, A., Mittal, Y., Dwivedi, S., Saket, P., Panja, R., Saeed, T., Martínez, F., & Yadav, A. K. (2023). The race between classical microbial fuel cells, sediment-microbial fuel cells, plant-microbial fuel cells, and constructed wetlands-microbial fuel cells: Applications and technology readiness level. Science of The Total Environment, 879, 162757. https://doi.org/10.1016/j.scitotenv.2023.162757
Haider, F. U., Zulfiqar, U., ul Ain, N., Hussain, S., Maqsood, M. F., Ejaz, M., Yong, J. W. H., & Li, Y. (2024). Harnessing plant extracts for eco-friendly synthesis of iron nanoparticle (Fe-NPs): Characterization and their potential applications for ameliorating environmental pollutants. Ecotoxicology and Environmental Safety, 281, 116620. https://doi.org/10.1016/j.ecoenv.2024.116620
Harshiny, M., Samsudeen, N., Kameswara, R. J., & Matheswaran, M. (2017). Biosynthesized FeO nanoparticles coated carbon anode for improving the performance of microbial fuel cell. International Journal of Hydrogen Energy, 42(42), 26488–26495. https://doi.org/10.1016/j.ijhydene.2017.07.084
Jabeen, A., Khan, A., Ahmad, P., Khalid, A., Ibrahim Wizrah, M. S., Anjum, Z., Alotibi, S., Aloufi, B. H., Alanazi, A. M., Jefri, O. A., & Ismail, M. A. (2024). Biogenic synthesis of levofloxacin-loaded copper oxide nanoparticles using Cymbopogon citratus: A green approach for effective antibacterial applications. Heliyon, 10(6), e27018. https://doi.org/10.1016/j.heliyon.2024.e27018
Jabeen, A., Khan, A., Ahmad, P., Khalid, A., Majeed, Z., Anjum, Z., Modafer, Y., Jefri, O. A., Alanazi, A. M., Saeedi, A. M., Alsehli, A. H., Alsowayigh, M. M., Khandaker, M. U., & Boukhris, I. (2023). Biomedical and photocatalytic dye degradation studies of Cymbopogon citratus mediated copper oxide nanoparticles (CuO NPs). Journal of Drug Delivery Science and Technology, 87, 104795. https://doi.org/10.1016/j.jddst.2023.104795
Karpagavinayagam, P., & Vedhi, C. (2019). Green synthesis of iron oxide nanoparticles using Avicennia marina flower extract. Vacuum, 160, 286–292. https://doi.org/10.1016/j.vacuum.2018.11.043
Lv, Z., Xie, D., Yue, X., Feng, C., & Wei, C. (2012). Ruthenium oxide-coated carbon felt electrode: A highly active anode for microbial fuel cell applications. Journal of Power Sources, 210, 26–31. https://doi.org/10.1016/j.jpowsour.2012.02.109
Mejía-López, M., Lastres, O., Alemán-Ramirez, J. L., Lobato-Peralta, D. R., Verde, A., Gámez, J. J. M., de Paz, P. L., & Verea, L. (2023). Conductive carbon-polymer composite for bioelectrodes and electricity generation in a sedimentary microbial fuel cell. Biochemical Engineering Journal, 193, 108856. https://doi.org/10.1016/j.bej.2023.108856
Mejía-López, M., Lastres, O., Alemán-Ramírez, J. L., Verde, A., Alvarez, J. C., Torres-Arellano, S., Trejo-Díaz, G. N., Sebastian, P. J., & Verea, L. (2024). Improvement of Power Density and COD Removal in a Sediment Microbial Fuel Cell with α-FeOOH Nanoparticles. Catalysts, 14(9), 561. https://doi.org/10.3390/catal14090561
Mohamed, H. O., Sayed, E. T., Obaid, M., Choi, Y.-J., Park, S.-G., Al-Qaradawi, S., & Chae, K.-J. (2018). Transition metal nanoparticles doped carbon paper as a cost-effective anode in a microbial fuel cell powered by pure and mixed biocatalyst cultures. International Journal of Hydrogen Energy, 43(46), 21560–21571. https://doi.org/10.1016/j.ijhydene.2018.09.199
Nacer, S. N., Wassima, L., Boussebaa, W., Abadi, A., Benyahia, I., Mouhoubi, D., Ladjal, A., Hammi, H., Bachir, H., Dehliz, A., & Moussaoui, Y. (2024). Phytochemical screening, antioxidant, antibacterial, and antifungal properties of the Cymbopogon citratus methanolic extract. Pharmacological Research - Natural Products, 5, 100094. https://doi.org/10.1016/j.prenap.2024.100094
Nadeem, F., Fozia, F., Aslam, M., Ahmad, I., Ahmad, S., Ullah, R., Almutairi, M. H., Aleya, L., & Abdel-Daim, M. M. (2022). Characterization, Antiplasmodial and Cytotoxic Activities of Green Synthesized Iron Oxide Nanoparticles Using Nephrolepis exaltata Aqueous Extract. Molecules, 27(15), 4931. https://doi.org/10.3390/molecules27154931
Panneerselvam, C., Ali Alshehri, M., Saif, A., Faridi, U., Khasim, S., Mohammedsaleh, Z. M., Parveen, H., Omer, N., Alasmari, A., Mukhtar, S., & Al-Aoh, H. A. (2024). Green synthesis of Abutilon indicum (L) derived iron oxide (FeO) nanoparticles with excellent biological, anticancer and photocatalytic activities. Polyhedron, 257, 117022. https://doi.org/10.1016/j.poly.2024.117022
Pushkar, P., Prakash, O., Imran, M., Mungray, A. A., Kailasa, S. K., & Mungray, A. K. (2019). Effect of cerium oxide nanoparticles coating on the electrodes of benthic microbial fuel cell. Separation Science and Technology, 54(2), 213–223. https://doi.org/10.1080/01496395.2018.1501393
Rama, P., Thangapushbam, V., Sivakami, S., Jothika, M., Mariselvi, P., Sundaram, R., & Muthu, K. (2024). Preparation, characterization of green synthesis FeO nanoparticles and their photocatalytic activity towards Basic Fuschin dye. Journal of the Indian Chemical Society, 101(4), 101142. https://doi.org/10.1016/j.jics.2024.101142
Reyes-Vallejo, O., Torres-Arellano, S., Aleman-Ramirez, J. L., & Sebastian, P. J. (2024). Green chemical synthesis of photovoltaic materials. In Photovoltaics Beyond Silicon (pp. 405–435). Elsevier. https://doi.org/10.1016/B978-0-323-90188-8.00004-X
Sidik, D. A. B., Hairom, N. H. H., Ahmad, M. K., Madon, R. H., & Mohammad, A. W. (2020). Performance of membrane photocatalytic reactor incorporated with ZnO-Cymbopogon citratus in treating palm oil mill secondary effluent. Process Safety and Environmental Protection, 143, 273–284. https://doi.org/10.1016/j.psep.2020.06.038
Subahar, R., Hadyansyah, R., Aldilla, R., Yulhasri, Y., Winita, R., Dwira, S., & El Bayani, G. F. (2024). Toxicity of 6-gingerol and Cymbopogon citratus against Pediculus humanus capitis De Geer (Phthiraptera: Pediculidae): Mortality, detoxifying enzymes, and morphological ultrastructure alterations in lice. Research in Veterinary Science, 177, 105364. https://doi.org/10.1016/j.rvsc.2024.105364
Tazi, A., Zinedine, A., Rocha, J. M., & Errachidi, F. (2024). Review on the pharmacological properties of lemongrass (Cymbopogon citratus) as a promising source of bioactive compounds. Pharmacological Research - Natural Products, 3, 100046. https://doi.org/10.1016/j.prenap.2024.100046
Thirbika, S., Karthi, H., Premila, R., & Ramesh Prabhu, M. (2022). Investigations on biosynthesized nickel oxide nanoparticles using Cymbopogon citratus leaf extract for antibacterial activity. Materials Today: Proceedings, 68, 276–281. https://doi.org/10.1016/j.matpr.2022.05.168
Thirumavalavan, M., Sukumar, K., & Sabarimuthu, S. Q. (2024). Trends in green synthesis, pharmaceutical and medical applications of nano ZnO: A review. Inorganic Chemistry Communications, 169, 113002. https://doi.org/10.1016/j.inoche.2024.113002
Torres-Arellano, S., Luevano-Hipolito, E., Fabela-Cedillo, M. G., Aleman-Ramirez, J. L., Torres-Martínez, L. M., & Sebastian, P. J. (2024). Optimized CO2 photoreduction using cuprous oxide (Cu2O) nanoparticles synthesized using Psidium guajava extract. Energy, Ecology and Environment. https://doi.org/10.1007/s40974-024-00331-x
Torres-Arellano, S., Torres-Martinez, L. M., Luévano-Hipólito, E., Aleman-Ramirez, J. L., & Sebastian, P. J. (2023). Biologically mediated synthesis of CuO nanoparticles using corn COB (Zea mays) ash for photocatalytic hydrogen production. Materials Chemistry and Physics, 301, 127640. https://doi.org/10.1016/j.matchemphys.2023.127640
Uthiravel, V., Narayanamurthi, K., Raja, V., Anandhabasker, S., & Kuppusamy, K. (2024). Green synthesis and characterization of TiO2 and Ag-doped TiO2 nanoparticles for photocatalytic and antimicrobial applications. Inorganic Chemistry Communications, 113327. https://doi.org/10.1016/j.inoche.2024.113327
Yang, Q., Yang, S., Liu, G., Zhou, B., Yu, X., Yin, Y., Yang, J., & Zhao, H. (2021). Boosting the anode performance of microbial fuel cells with a bacteria-derived biological iron oxide/carbon nanocomposite catalyst. Chemosphere, 268, 128800. https://doi.org/10.1016/j.chemosphere.2020.128800