Química verde: Una revisión de sus principios y aplicaciones industriales

Autores/as

DOI:

https://doi.org/10.29057/icbi.v13i25.13805

Palabras clave:

Química verde, economía circular, diseño de materiales impulsado por IA, síntesis sostenible de nanoestructuras, polímeros biodegradables

Resumen

El deterioro ambiental actual demanda soluciones sostenibles, tales como la implementación de los principios de la química verde en la industria, que tiene como objetivo diseñar productos y procesos químicos que reduzcan la generación de sustancias peligrosas y que optimicen el uso de recursos. Esta contribución se enfocó en examinar los fundamentos de la química verde y sus aplicaciones en diversas industrias, recurriendo a estudios de caso y ejemplos contemporáneos para ilustrar cómo su puesta en práctica disminuye el impacto ambiental, optimiza la eficiencia de los procesos y promueve la sostenibilidad a escala mundial. Se enfatizó la influencia de la química verde en campos como la fabricación de compuestos químicos, la generación de biocombustibles y la formulación de medicamentos, fomentando así una industria de mayor sostenibilidad. Se llegó a la conclusión de que la incorporación de la química verde es determinante para alcanzar un equilibrio entre el progreso industrial y la responsabilidad ambiental, y su implementación continua es esencial para abordar los retos ambientales futuros y progresar hacia un desarrollo más sostenible.

Descargas

Los datos de descargas todavía no están disponibles.

Información de Publicación

Metric
Este artículo
Otros artículos
Revisores por pares 
2.4 promedio

Perfiles de revisores  N/D

Declaraciones del autor

Declaraciones del autor
Este artículo
Otros artículos
Disponibilidad de datos 
N/A
16%
Financiamiento externo 
No
32% con financiadores
Intereses conflictivos 
N/D
11%
Metric
Para esta revista
Otras revistas
Artículos aceptados 
86%
33%
Días hasta la publicación 
237
145

Indexado en

Editor y comité editorial
perfiles
Sociedad académica 
N/D

Citas

Ahmad, N., & Tariq, H. (2021). Azolla as Waste Decomposer and Bio-fertilizer: A Review. Journal of Applied Research in Plant Sciences, 2(1), 108-116. https://doi.org/10.38211/joarps.2020.2.1.14

Alarcón, H., Tolmos, M., Villacrés, N., & Huarote, E. (2021). Química Verde – Una Alternativa Eco-Amigable En La Obtención De Nanopartículas De Ag0. Revista de la Sociedad Química del Perú, 87(3). https://doi.org/10.37761/rsqp.v87i3.354

Ali, S., Al‐Rashida, M., Younus, H. A., Moin, S. T., & Hameed, A. (2020). Piperidinium‐Based Deep Eutectic Solvents: Efficient and Sustainable Eco‐Friendly Medium for One‐Pot N ‐Heterocycles Synthesis. ChemistrySelect, 5(41), 12697-12703. https://doi.org/10.1002/slct.202002374

Amamoto, Y., Koganemaru, C., Kojio, K., Takahara, A., Yamamoto, S., Okazawa, K., Tsuji, Y., Aritake, T., & Terayama, K. (2023). A Machine Learning Approach to Designing Tough and Degradable Polyamides Based on Multiblock Structures. https://doi.org/10.26434/chemrxiv-2023-jm387

Anastas, P., & Eghbali, N. (2010). Green Chemistry: Principles and Practice. Chem. Soc. Rev., 39(1), 301-312. https://doi.org/10.1039/B918763B

Anastas, P. T. (2018). Origins and Early History of Green Chemistry. En I. T. Horváth & M. Malacria, Series on Chemistry, Energy and the Environment (Vol. 0, pp. 1-17). WORLD SCIENTIFIC. https://doi.org/10.1142/9789813228115_0001

Anastas, P. T., & Kirchhoff, M. M. (2002). Origins, Current Status, and Future Challenges of Green Chemistry. Accounts of Chemical Research, 35(9), 686-694. https://doi.org/10.1021/ar010065m

Ardila‐Fierro, K. J., & Hernández, J. G. (2021). Sustainability Assessment of Mechanochemistry by Using the Twelve Principles of Green Chemistry. ChemSusChem, 14(10), 2145-2162. https://doi.org/10.1002/cssc.202100478

Armenta, S., Esteve-Turrillas, F. A., Garrigues, S., & de la Guardia, M. (2022). Alternative Green Solvents in Sample Preparation. Green Analytical Chemistry, 1, 100007. https://doi.org/10.1016/j.greeac.2022.100007

Arteaga-Crespo, Y., Carballo-Abreu, L. R., Sotolongo-Sospedra, R., Hevia-Jiménez, Y., & Tacoronte-Morales, J. E. (2010). Rosin of Cuban Pines for the Control of Tropical Illnesses Transmitted by Mollusks. Revista Chapingo Serie Ciencias Forestales y del Ambiente, XVI(1), 31-36. https://doi.org/10.5154/r.rchscfa.2009.04.009

Ashraf, C., Joshi, N., Beck, D. A. C., & Pfaendtner, J. (2021). Data Science in Chemical Engineering: Applications to Molecular Science. Annual Review of Chemical and Biomolecular Engineering, 12(1), 15-37. https://doi.org/10.1146/annurev-chembioeng-101220-102232

Banger, A., Srivastava, A., Yadav, A., Sharma, R., & Srivastava, M. (2023). Application of Green Solvent in Green Chemistry: An overview. Green Chemistry & Technology Letters, 9(1), 01-14. https://doi.org/10.18510/gctl.2023.911

Barna, C., Zbuchea, A., & Stănescu, S. M. (2023). Social Economy Enterprises Contributing to the Circular Economy and the Green Transition in Romania. CIRIEC-España, revista de economía pública, social y cooperativa, 107, 47-69. https://doi.org/10.7203/CIRIEC-E.107.21738

Bello, M., & Bahena Culhuac, E. (2024). Ecologización de la industria farmacéutica: La química verde en el desarrollo de medicamentos. Revista Digital Universitaria, 25(1). https://doi.org/10.22201/cuaieed.16076079e.2024.25.1.9

Benítez-Villalba, J. C., Dorival-García, N., Villalba-Villalba, N. M., & Vílchez, J. L. (2018). Validation of an Analysis Method for Benzophenones in a Soil Sample Through Pressurized Liquid Extraction and Liquid Chromatograph Coupled to Tandem Mass Spectrometry. Reportes científicos de la FACEN, 9(1), 51-63. https://doi.org/10.18004/rcfacen.2018.9.1.51

Bernini, R., Campo, M., Cassiani, C., Fochetti, A., Ieri, F., Lombardi, A., Urciuoli, S., Vignolini, P., Villanova, N., & Vita, C. (2024). Polyphenol-Rich Extracts from Agroindustrial Waste and Byproducts: Results and Perspectives According to the Green Chemistry and Circular Economy. Journal of Agricultural and Food Chemistry, 72(23), 12871-12895. https://doi.org/10.1021/acs.jafc.4c00945

Boateng, I. D. (2022). A Critical Review of Emerging Hydrophobic Deep Eutectic Solvents’ Applications in Food Chemistry: Trends and Opportunities. Journal of Agricultural and Food Chemistry, 70(38), 11860-11879. https://doi.org/10.1021/acs.jafc.2c05079

Bordiga, M., Kelebek, H., & Selli, S. (2023). Special Issue on “Green Chemistry in Food Processing”. International Journal of Food Science & Technology, 58(7), 3933-3934. https://doi.org/10.1111/ijfs.16419

Borreguero, A. M., Valverde, J. L., García‐Vargas, J. M., & Sánchez‐Silva, L. (2019). Simulator‐Based Learning in the Teaching of Chemical Engineering. Computer Applications in Engineering Education, 27(5), 1267-1276. https://doi.org/10.1002/cae.22150

Cannavacciuolo, C., Pagliari, S., Frigerio, J., Giustra, C. M., Labra, M., & Campone, L. (2022). Natural Deep Eutectic Solvents (NADESs) Combined with Sustainable Extraction Techniques: A Review of the Green Chemistry Approach in Food Analysis. Foods, 12(1), 56. https://doi.org/10.3390/foods12010056

Carrillo, G., Eimer, G., Vaschetto, E. G., & Ferrero, G. O. (2022). Síntesis de sílicas mesoporosas a partir de moldeantes renovables para el desarrollo de catalizadores heterogéneos enzimáticos y su aplicación en reacciones de esterificación de interés en química fina. AJEA, 15. https://doi.org/10.33414/ajea.1094.2022

Castañedo Hernández, Z. A., Meneses-Marcel, A., Aguila Jiménez, E., Seijo Wals, M., & Díaz Solares, M. (2022). Evaluación de la toxicidad aguda del IHPLUS® sobre Eisenia fetida. Ciencias Agronómicas, 39, e019. https://doi.org/10.35305/agro39.e019

Castro-Caicedo, A. J., Alejano, L. R., Monsalve Oliveros, J. E., & Bernal Montiel, A. (2019). Diseño geotécnico de pilares en minas subterráneas de vetas auríferas en casos de Colombia. DYNA, 86(209), 337-346. https://doi.org/10.15446/dyna.v86n209.74041

Chen, T.-L., Kim, H., Pan, S.-Y., Tseng, P.-C., Lin, Y.-P., & Chiang, P.-C. (2020). Implementation of Green Chemistry Principles in Circular Economy System Towards Sustainable Development Goals: Challenges and Perspectives. Science of The Total Environment, 716, 136998. https://doi.org/10.1016/j.scitotenv.2020.136998

Chiang, L. H., Braun, B., Wang, Z., & Castillo, I. (2022). Towards Artificial Intelligence at Scale in the Chemical Industry. AIChE Journal, 68(6), e17644. https://doi.org/10.1002/aic.17644

Chook, K. Y., Aroua, M. K., & Gew, L. T. (2023). Enzyme Biocatalysis for Sustainability Applications in Reactors: A Systematic Review. Industrial & Engineering Chemistry Research, 62(28), 10800-10812. https://doi.org/10.1021/acs.iecr.3c00832

Cosio, M. N., Cardenal, A. D., Maity, A., Hyun, S.-M., Akwaowo, V. E., Hoffman, C. W., Powers, T. M., & Powers, D. C. (2020). Exploring Green Chemistry with Aerobic Hypervalent Iodine Catalysis. Journal of Chemical Education, 97(10), 3816-3821. https://doi.org/10.1021/acs.jchemed.0c00410

Cuevas-García, R., & Bravo Nava, I. (2021). Producción de combustibles renovables. Mundo Nano. Revista Interdisciplinaria en Nanociencias y Nanotecnología, 16(30), 1e-50e. https://doi.org/10.22201/ceiich.24485691e.2023.30.69635

Cunha, S. D. D., & Silveira Matosa, J. (2017). Além da caipirinha: Cachaça como solvente para síntese orgânica e extração de pigmento. Química Nova. https://doi.org/10.21577/0100-4042.20170110

Davies, J. C., & Hirst, J. D. (2024). Software Tools for Green and Sustainable Chemistry. En Reference Module in Chemistry, Molecular Sciences and Chemical Engineering (p. B9780443157424000491). Elsevier. https://doi.org/10.1016/B978-0-443-15742-4.00049-1

DeVito, S. C. (2016). On the Design of Safer Chemicals: A Path Forward. Green Chemistry, 18(16), 4332-4347. https://doi.org/10.1039/C6GC00526H

DeVito, S. C., Keenan, C., & Lazarus, D. (2015). Can Pollutant Release and Transfer Registers (prtrs) Be Used to Assess Implementation and Effectiveness of Green Chemistry Practices? A Case Study Involving the Toxics Release Inventory (tri) and Pharmaceutical Manufacturers. Green Chemistry, 17(5), 2679-2692. https://doi.org/10.1039/C5GC00056D

Díaz Molina, J. M., Morales Toscano, A. C., Fernández Rojas, M., Briceño-Gamba, N., Villalba Rey, D., & Sánchez, M. D. R. (2019). Determinación y análisis estadístico de la composición de los gases producidos en un piloto de recobro mejorado. Revista ION, 32(1), 63-73. https://doi.org/10.18273/revion.v32n1-2019006

Domingues, L., Duarte, A. R. C., & Jesus, A. R. (2024). How Can Deep Eutectic Systems Promote Greener Processes in Medicinal Chemistry and Drug Discovery? Pharmaceuticals, 17(2), 221. https://doi.org/10.3390/ph17020221

Doria Serrano, Ma. D. C. (2009). Química verde: Un nuevo enfoque para el cuidado del medio ambiente. Educación Química, 20(4), 412-420. https://doi.org/10.1016/S0187-893X(18)30044-2

Dubey, A. V., & Kumar, A. V. (2018). Cu(II)–Glucose: Sustainable Catalyst for the Synthesis of Quinazolinones in a Biomass-Derived Solvent 2-MethylTHF and Application for the Synthesis of Diproqualone. ACS Sustainable Chemistry & Engineering, 6(11), 14283-14291. https://doi.org/10.1021/acssuschemeng.8b02940

Dubey, R., Bryde, D. J., Blome, C., Roubaud, D., & Giannakis, M. (2021). Facilitating Artificial Intelligence Powered Supply Chain Analytics Through Alliance Management During the Pandemic Crises in the B2b Context. Industrial Marketing Management, 96, 135-146. https://doi.org/10.1016/j.indmarman.2021.05.003

Dwivedi, K. D., Marri, S. R., Nandigama, S. K., & Chowhan, R. L. (2018). An Efficient Solvent-Free Synthesis of 3-Methyl-4-Nitro-5-Styrylisoxazoles Using Solid Nano-Titania. Journal of Chemical Sciences, 130(9), 129. https://doi.org/10.1007/s12039-018-1534-0

Dwivedi, K. D., Reddy, M. S., Kumar, N. S., & Chowhan, L. R. (2019). Facile Synthesis of 3‐Hydroxy Oxindole by a Decarboxylative Aldol Reaction of β‐Ketoacid and Isatin in Wersa. ChemistrySelect, 4(29), 8602-8605. https://doi.org/10.1002/slct.201900150

Erickson, M., Vasyutyn, D., Ngongang, M., Daghighi, A., Szwiec, S., Casañola-Martin, G., & Rasulev, B. (2024). In Silico Prediction of the Biodegradability of Chlorinated Com-pounds: Application of Quantitative Structure-Biodegradability Relationship Approach. https://doi.org/10.26434/chemrxiv-2024-p7dx4

Erythropel, H. C., Börmann, A., Nicell, J. A., Leask, R. L., & Maric, M. (2018). Designing Green Plasticizers: Linear Alkyl Diol Dibenzoate Plasticizers and a Thermally Reversible Plasticizer. Polymers, 10(6), 646. https://doi.org/10.3390/polym10060646

Estévez, C. (2005). La química verde ya es una realidad. Daphnia, 38. https://www.daphnia.es/revista/38/articulo/609/La-quimica-verde-ya-es-una-realidad

Faba, L., Díaz, E., & Ordóñez, S. (2014). Transformación de biomasa en biocombustibles de segunda generación. Madera y Bosques, 20(3), 11-24. https://doi.org/10.21829/myb.2014.203148

Fedie, R. L., McNeff, C. V., McNeff, C. V., McNeff, L. C., Greuel, P. G., Yan, B., Jenkins, J. A., Brethorst, J. T., Frost, G. B., & Hoye, T. R. (2022). Hydrothermal Catalysis of Waste Greases into Green Gasoline, Jet, and Diesel Biofuels in Continuous Flow Supercritical Water. Biofuels, Bioproducts and Biorefining, 16(2), 349-369. https://doi.org/10.1002/bbb.2322

Ferreira, L. C., Moreira, B. R. D. A., Montagnolli, R. N., Prado, E. P., Viana, R. D. S., Tomaz, R. S., Cruz, J. M., Bidoia, E. D., Frias, Y. A., & Lopes, P. R. M. (2021). Green Manure Species for Phytoremediation of Soil With Tebuthiuron and Vinasse. Frontiers in Bioengineering and Biotechnology, 8, 613642. https://doi.org/10.3389/fbioe.2020.613642

Flank, W. H., Abraham, M. A., & Matthews, M. A. (Eds.). (2008). Innovations in Industrial and Engineering Chemistry: A Century of Achievements and Prospects for the New Millennium (Vol. 1000). American Chemical Society. https://doi.org/10.1021/bk-2009-1000

Foppa, L., Ghiringhelli, L. M., Girgsdies, F., Hashagen, M., Kube, P., Hävecker, M., Carey, S. J., Tarasov, A., Kraus, P., Rosowski, F., Schlögl, R., Trunschke, A., & Scheffler, M. (2021). Materials genes of heterogeneous catalysis from clean experiments and artificial intelligence. MRS Bulletin, 46(11), 1016-1026. https://doi.org/10.1557/s43577-021-00165-6

García-Curiel, L., Pérez-Flores, J. G., Contreras-López, E., Pérez-Escalante, E., & Paz-Samaniego, R. (2024). Evaluating the application of an arabinoxylan-rich fraction from brewers’ spent grain as a release modifier of drugs. Natural Product Research, 38(10), 1759-1765. https://doi.org/10.1080/14786419.2023.2214841

Garzón García, G., Guillermo Morales, J., & Lopez, L. A. (2018). Evaluación del grado de verdor de la Síntesis del Complejo CuCl2(DMSO)2 a Escala Micro Empleando la Métrica Escala Verde. BISTUA Revista De La Facultad De Ciencias Básicas, 16(2). https://doi.org/10.24054/01204211.v2.n2.2017.2878

Geyer, R., Jambeck, J. R., & Law, K. L. (2017). Production, use, and fate of all plastics ever made. Science Advances, 3(7), e1700782. https://doi.org/10.1126/sciadv.1700782

Ghadami, A., & Epureanu, B. I. (2022). Data-driven prediction in dynamical systems: Recent developments. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 380(2229), 20210213. https://doi.org/10.1098/rsta.2021.0213

Gómez, E. A., Ríos, L. A., & Peña, J. D. (2013). Efecto del Pretratamiento de Biomasa Maderera en el Rendimiento a Etanol. Información Tecnológica, 24(5), 113-122. https://doi.org/10.4067/S0718-07642013000500013

Gonzalez, F., Retamal, C., Silva, L., Cerda, P., Medel, P., Solari, S., Mellado, R., & Rios, J. C. (2019). Caracterización de las consultas realizadas a un Centro de Información Toxicológica por productos de aseo y productos cosméticos en niños. Revista Chilena de Pediatría, 90(5). https://doi.org/10.32641/rchped.v90i5.1017

Goode, S. R., Wissinger, J. E., & Wood-Black, F. (2021). Introducing the Journal of Chemical Education ’s Special Issue on Chemical Safety Education: Methods, Culture, and Green Chemistry. Journal of Chemical Education, 98(1), 1-6. https://doi.org/10.1021/acs.jchemed.0c01459

Gricourt, G., Meyer, P., Duigou, T., & Faulon, J.-L. (2024). Artificial Intelligence Methods and Models for Retro-Biosynthesis: A Scoping Review. ACS Synthetic Biology, 13(8), 2276-2294. https://doi.org/10.1021/acssynbio.4c00091

Grieger, K., Schiro, A., & Leontyev, A. (2022). Development of the Assessment of Student Knowledge of Green Chemistry Principles (ASK-GCP). Chemistry Education Research and Practice, 23(3), 531-544. https://doi.org/10.1039/D1RP00291K

Guajardo, N., Müller, C. R., Schrebler, R., Carlesi, C., & Domínguez de María, P. (2016). Deep Eutectic Solvents for Organocatalysis, Biotransformations, and Multistep Organocatalyst/Enzyme Combinations. ChemCatChem, 8(6), 1020-1027. https://doi.org/10.1002/cctc.201501133

Guevara-Fefer, P., Sánchez-Ramos, G., De-Jesús-Romero, Y. A., & Niño-García, N. (2016). Jatropha sotoi-nunyezii y Jatropha curcas, especies de Tamaulipas: Una comparación desde la perspectiva de los biocombustibles. CienciaUAT, 11(1), 91. https://doi.org/10.29059/cienciauat.v11i1.769

Guo, J., Haghshenas, Y., Jiao, Y., Kumar, P., Yakobson, B. I., Roy, A., Jiao, Y., Regenauer‐Lieb, K., Nguyen, D., & Xia, Z. (2024). Rational Design of Earth‐Abundant Catalysts toward Sustainability. Advanced Materials, 2407102. https://doi.org/10.1002/adma.202407102

Guo, X., & Long, X. (2023). Research on the Development Strategy of E-Business Green Logistics Based on AHP. E3S Web of Conferences, 372, 02003. https://doi.org/10.1051/e3sconf/202337202003

Hayagan, N., Gaalich, I., Loubet, P., Croguennec, L., Aymonier, C., Philippot, G., & Olchowka, J. (2024). Challenges and Perspectives for Direct Recycling of Electrode Scraps and End‐of‐Life Lithium‐ion Batteries. Batteries & Supercaps, 7(6), e202400120. https://doi.org/10.1002/batt.202400120

Hernández Cruz, A., & Santacruz Ortega, H. (2023). Detección de metales en agua a través de teléfonos inteligentes. EPISTEMUS, 18(35). https://doi.org/10.36790/epistemus.v18i35.299

Ibarra-Pérez, D., Faba, S., Hernández-Muñoz, V., Smith, C., Galotto, M. J., & Garmulewicz, A. (2023). Predicting the Composition and Mechanical Properties of Seaweed Bioplastics from the Scientific Literature: A Machine Learning Approach for Modeling Sparse Data. Applied Sciences, 13(21), 11841. https://doi.org/10.3390/app132111841

Jad, Y. E., Kumar, A., El-Faham, A., De La Torre, B. G., & Albericio, F. (2019). Green Transformation of Solid-Phase Peptide Synthesis. ACS Sustainable Chemistry & Engineering, 7(4), 3671-3683. https://doi.org/10.1021/acssuschemeng.8b06520

Jadoun, S., Arif, R., Jangid, N. K., & Meena, R. K. (2021). Green synthesis of nanoparticles using plant extracts: A review. Environmental Chemistry Letters, 19(1), 355-374. https://doi.org/10.1007/s10311-020-01074-x

Kandel Gambarte, P. C., Rovedatti, M. G., Ferloni, A., Pereiro, N., Cruz, M. G., Aragone, S., Figar, S. B., Dawidowski, A. R., & Wolansky, M. J. (2022). Percepción del riesgo de toxicidad por exposición a plaguicidas domésticos en hogares con niños de 0 a 3 años. Andes Pediatrica, 93(5), 668. https://doi.org/10.32641/andespediatr.v93i5.4067

Khan, M. I., Shin, J. H., & Kim, J. D. (2018). The promising future of microalgae: Current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microbial Cell Factories, 17(1), 36. https://doi.org/10.1186/s12934-018-0879-x

Kim, S., Ga, S., Bae, H., Sluyter, R., Konstantinov, K., Shrestha, L. K., Kim, Y. H., Kim, J. H., & Ariga, K. (2024). Multidisciplinary approaches for enzyme biocatalysis in pharmaceuticals: Protein engineering, computational biology, and nanoarchitectonics. EES Catalysis, 2(1), 14-48. https://doi.org/10.1039/D3EY00239J

Kohse‐Höinghaus, K., Oßwald, P., Cool, T. A., Kasper, T., Hansen, N., Qi, F., Westbrook, C. K., & Westmoreland, P. R. (2010). Biofuel Combustion Chemistry: From Ethanol to Biodiesel. Angewandte Chemie International Edition, 49(21), 3572-3597. https://doi.org/10.1002/anie.200905335

Kosnik, M. B., Hauschild, M. Z., & Fantke, P. (2022). Toward Assessing Absolute Environmental Sustainability of Chemical Pollution. Environmental Science & Technology, 56(8), 4776-4787. https://doi.org/10.1021/acs.est.1c06098

Krasnodębski, M. (2023). An unlikely bifurcation: History of sustainable (but not Green) chemistry. Foundations of Chemistry, 25(3), 463-484. https://doi.org/10.1007/s10698-023-09474-x

Kumar, S., Honnappanavar, M., & Hn, S. (2024). Impact of in-situ green manuring on soil properties and fertility under regenerative farming: A case study of Akshayakalpa farm in Tiptur, India. International Journal of Research in Agronomy, 7(5S), 112-115. https://doi.org/10.33545/2618060X.2024.v7.i5Sb.721

Kumarasinghe, K. G. U. R., Kandambi, H. H., & Samaradiwakara, D. M. T. A. (2023). Recent Advances in Green Approaches for Synthesis of Oxindole Derivatives. Vidyodaya Journal of Science, 1(s1). https://doi.org/10.31357/vjs.v1is1.6715

Kurańska, M., Ptak, M., Malewska, E., Prociak, A., Barczewski, M., Dymek, M., Fernandes, F. A. O., De Sousa, R. A., Polaczek, K., Studniarz, K., & Uram, K. (2023). Cork Porous Biocomposites with Polyurethane Matrix Modified with Polyol Based on Used Cooking Oil. Materials, 16(8), 3032. https://doi.org/10.3390/ma16083032

Leahy, D. K., Tucker, J. L., Mergelsberg, I., Dunn, P. J., Kopach, M. E., & Purohit, V. C. (2013). Seven Important Elements for an Effective Green Chemistry Program: An IQ Consortium Perspective. Organic Process Research & Development, 17(9), 1099-1109. https://doi.org/10.1021/op400192h

Li, F., Zhang, K., Hao, A., Yin, C., & Wu, G. (2021). Environmental Behavior Spillover or Public Information Induction: Consumers’ Intention to Pay a Premium for Rice Grown with Green Manure as Crop Fertilizer. Foods, 10(6), 1285. https://doi.org/10.3390/foods10061285

Li, M., Rao, C., Ye, X., Wang, M., Yang, B., Wang, C., Guo, L., Xiong, Y., & Cui, X. (2023). Applications for natural deep eutectic solvents in Chinese herbal medicines. Frontiers in Pharmacology, 13, 1104096. https://doi.org/10.3389/fphar.2022.1104096

Li, Y., Fabiano-Tixier, A. S., Tomao, V., Cravotto, G., & Chemat, F. (2013). Green ultrasound-assisted extraction of carotenoids based on the bio-refinery concept using sunflower oil as an alternative solvent. Ultrasonics Sonochemistry, 20(1), 12-18. https://doi.org/10.1016/j.ultsonch.2012.07.005

Liao, J. C., Mi, L., Pontrelli, S., & Luo, S. (2016). Fuelling the future: Microbial engineering for the production of sustainable biofuels. Nature Reviews Microbiology, 14(5), 288-304. https://doi.org/10.1038/nrmicro.2016.32

Liao, M., Lan, K., & Yao, Y. (2022). Sustainability implications of artificial intelligence in the chemical industry: A conceptual framework. Journal of Industrial Ecology, 26(1), 164-182. https://doi.org/10.1111/jiec.13214

Linder, M. (2017). Ripe for disruption: Reimagining the role of green chemistry in a circular economy. Green Chemistry Letters and Reviews, 10(4), 428-435. https://doi.org/10.1080/17518253.2017.1392618

Liu, M., Guo, J., Gu, Y., Gao, J., Liu, F., & Yu, S. (2018). Pushing the Limits in Alcoholysis of Waste Polycarbonate with DBU-Based Ionic Liquids under Metal- and Solvent-Free Conditions. ACS Sustainable Chemistry & Engineering, 6(10), 13114-13121. https://doi.org/10.1021/acssuschemeng.8b02650

Liu, X., Cai, C., Zhao, W., Peng, H.-J., & Wang, T. (2022). Machine Learning-Assisted Screening of Stepped Alloy Surfaces for C 1 Catalysis. ACS Catalysis, 12(8), 4252-4260. https://doi.org/10.1021/acscatal.2c00648

Lu, T., Reimonn, G., Morose, G., Yu, E., & Chen, W.-T. (2021). Removing Acrylic Conformal Coating with Safer Solvents for Re-Manufacturing Electronics. Polymers, 13(6), 937. https://doi.org/10.3390/polym13060937

Luo, Y., Iqbal, A., He, L., Zhao, Q., Wei, S., Ali, I., Ullah, S., Yan, B., & Jiang, L. (2020). Long-Term No-Tillage and Straw Retention Management Enhances Soil Bacterial Community Diversity and Soil Properties in Southern China. Agronomy, 10(9), 1233. https://doi.org/10.3390/agronomy10091233

Lv, W., Wang, Z., Cao, H., Sun, Y., Zhang, Y., & Sun, Z. (2018). A Critical Review and Analysis on the Recycling of Spent Lithium-Ion Batteries. ACS Sustainable Chemistry & Engineering, 6(2), 1504-1521. https://doi.org/10.1021/acssuschemeng.7b03811

Mabesoone, M. F. J., Palmans, A. R. A., & Meijer, E. W. (2020). Solute–Solvent Interactions in Modern Physical Organic Chemistry: Supramolecular Polymers as a Muse. Journal of the American Chemical Society, 142(47), 19781-19798. https://doi.org/10.1021/jacs.0c09293

Malafeev, K. V., Apicella, A., Incarnato, L., & Scarfato, P. (2023). Understanding the Impact of Biodegradable Microplastics on Living Organisms Entering the Food Chain: A Review. Polymers, 15(18), 3680. https://doi.org/10.3390/polym15183680

Mali, S., Shinde, S., Damte, S., & Patil, S. (2018). Synergistic effect of natural chickpea leaf exudates acids in heterocyclization: A greener protocol for benzopyran synthesis. Royal Society Open Science, 5(2), 170333. https://doi.org/10.1098/rsos.170333

Martínez Arellano, A. C., Castillo Miranda, C. A., & Morales Cepeda, A. B. (2017). Geles de Hidroxipropilcelulosa y Poli(Acrilamida) Sintetizados por Radiación de Microondas (MAOS). Quimica Hoy, 7(4), 4. https://doi.org/10.29105/qh7.4-184

Martínez, J., Cortés, J. F., & Miranda, R. (2022). Green Chemistry Metrics, A Review. Processes, 10(7), 1274. https://doi.org/10.3390/pr10071274

Martinez-Guerra, E., & Gude, V. (2017). Assessment of Sustainability Indicators for Biodiesel Production. Applied Sciences, 7(9), 869. https://doi.org/10.3390/app7090869

Menges, N. (2018). The Role of Green Solvents and Catalysts at the Future of Drug Design and of Synthesis. En H. E.-D. M. Saleh & M. Koller (Eds.), Green Chemistry. InTech. https://doi.org/10.5772/intechopen.71018

Meramo-Hurtado, S. I., Moreno-Sader, K., & González Delgado, A. D. (2020). Evaluación ambiental de la producción a larga escala de microperlas de quitosano modificadas con tiourea como alternativa de valorización de residuos en el sector camaronicultor. Prospectiva, 18(1). https://doi.org/10.15665/rp.v18i1.2100

Modgil, S., Gupta, S., Stekelorum, R., & Laguir, I. (2022). AI technologies and their impact on supply chain resilience during COVID-19. International Journal of Physical Distribution & Logistics Management, 52(2), 130-149. https://doi.org/10.1108/IJPDLM-12-2020-0434

Morales, C. G., Castolo, A. A., & Rodriguez, M. A. (2020). Designing Safer Chemicals. En A. Sáenz-Galindo, A. O. Castañeda-Facio, & R. Rodríguez-Herrera (Eds.), Green Chemistry and Applications (1.a ed., pp. 60-83). CRC Press. https://doi.org/10.1201/9780429291166-5

Mozes-Koch, R., Tanne, E., Brodezki, A., Yehuda, R., Gover, O., Rabinowitch, H. D., & Sela, I. (2017). Expression of the entire polyhydroxybutyrate operon of Ralstonia eutropha in plants. Journal of Biological Engineering, 11(1), 44. https://doi.org/10.1186/s13036-017-0062-7

Mulyani, S., Lutfiyani, A., & Mahardiani, L. (2023). Development of a Virtual Chemistry Laboratory Based on Green Chemistry to Increase Technological Literacy Focusing on Factors Affecting Reaction Rates. PAEDAGOGIA, 26(1), 48. https://doi.org/10.20961/paedagogia.v26i1.71851

Nabi, A. A., Magsi, M. A., Ramakrishnan, S., & Tunio, F. H. (2020). The Role of Raw Material Prices in Renewable Energy Diffusion. https://doi.org/10.21203/rs.3.rs-42420/v1

Nadejde, C., Neamtu, M., & Creanga, D. (2015). Environment-Friendly Magnetic Fluids for Wastewater Remediation—Synthesis and Characterization. Acta Physica Polonica A, 127(2), 647-649. https://doi.org/10.12693/APhysPolA.127.647

Namdeti, R. (2023). Artificial Intelligence in Chemical Engineering: Past, Present, and Future Perspectives. Journal of Chemical Health Risks, 13(6), Article 6. https://doi.org/10.52783/jchr.v13.i6.2058

Narváez-Montaño, M. D. J., Mendoza-López, Ma. R., Sánchez-Viveros, G., Almaraz-Suarez, J. J., & Argumedo-Delira, R. (2023). Actividad inhibitoria de extractos alcohólicos de hongos comestibles contra Rhizoctonia solani. Revista Mexicana de Ciencias Agrícolas, 14(4), 615-625. https://doi.org/10.29312/remexca.v14i4.3200

Nava-Pérez, E., García-Gutiérrez, C., Camacho-Báez, J. R., & Vázquez-Montoya, E. L. (2012). Bioplaguicidas: Una opción para el control biológico de plagas. Ra Ximhai, 17-30. https://doi.org/10.35197/rx.08.03.e2.2012.03.en

Navarro-Espinoza, S., Meza-Figueroa, D. M., Pedroza-Montero, M. R., & Soto-Puebla, D. (2022). Catalizadores de tres vías: Historia, funcionamiento y ventajas ambientales. EPISTEMUS, 16(33). https://doi.org/10.36790/epistemus.v16i33.240

Ncube, A., Mtetwa, S., Bukhari, M., Fiorentino, G., & Passaro, R. (2023). Circular Economy and Green Chemistry: The Need for Radical Innovative Approaches in the Design for New Products. Energies, 16(4), 1752. https://doi.org/10.3390/en16041752

Nedjimi, B. (2021). Phytoremediation: A sustainable environmental technology for heavy metals decontamination. SN Applied Sciences, 3(3), 286. https://doi.org/10.1007/s42452-021-04301-4

Nien, H.-H., & Li, B.-R. (2023). La aplicación y práctica de la química en dispositivos ponibles para el análisis de fluidos corporales. Revista de Química, 37(2), 21-32. https://doi.org/10.18800/quimica.202302.003

Obeidat, S. M., Abdalla, S., & Al Bakri, A. A. K. (2023). Integrating green human resource management and circular economy to enhance sustainable performance: An empirical study from the Qatari service sector. Employee Relations: The International Journal, 45(2), 535-563. https://doi.org/10.1108/ER-01-2022-0041

Okuyelu, O., & Adaji, O. (2024). AI-Driven Real-time Quality Monitoring and Process Optimization for Enhanced Manufacturing Performance. Journal of Advances in Mathematics and Computer Science, 39(4), 81-89. https://doi.org/10.9734/jamcs/2024/v39i41883

O’Neil, N. J., Scott, S., Relph, R., & Ponnusamy, E. (2021). Approaches to Incorporating Green Chemistry and Safety into Laboratory Culture. Journal of Chemical Education, 98(1), 84-91. https://doi.org/10.1021/acs.jchemed.0c00134

Ortiz, A., & Sansinenea, E. (2022). The Role of Beneficial Microorganisms in Soil Quality and Plant Health. Sustainability, 14(9), 5358. https://doi.org/10.3390/su14095358

Paiva, A., Craveiro, R., Aroso, I., Martins, M., Reis, R. L., & Duarte, A. R. C. (2014). Natural Deep Eutectic Solvents – Solvents for the 21st Century. ACS Sustainable Chemistry & Engineering, 2(5), 1063-1071. https://doi.org/10.1021/sc500096j

Pájaro Castro, N. P., & Olivero Verbel, J. T. (2011). Química verde: Un nuevo reto. Ciencia e Ingeniería Neogranadina, 21(2), 169-182.

Patra, J. K., Das, G., Fraceto, L. F., Campos, E. V. R., Rodriguez-Torres, M. D. P., Acosta-Torres, L. S., Diaz-Torres, L. A., Grillo, R., Swamy, M. K., Sharma, S., Habtemariam, S., & Shin, H.-S. (2018). Nano based drug delivery systems: Recent developments and future prospects. Journal of Nanobiotechnology, 16(1), 71. https://doi.org/10.1186/s12951-018-0392-8

Pellegrini Pessoa, F. L., Villardi, H., Da Silva Calixto, E. E., Durão Vieira, E., Barbosa De Souza, A. L., & Souza Machado, B. A. (2020). Integrated Soybean Biorefinery. En V. Beschkov (Ed.), Biorefinery Concepts, Energy and Products. IntechOpen. https://doi.org/10.5772/intechopen.88111

Peñas-Garzón, M., Moreno-Medina, I., Bedia, J., & Belver, C. (2023). Síntesis y evaluación de fotocatalizadores TiO2/carbón activo: Un enfoque multidisciplinar y cooperativo para estudiantes de ingeniería química. Educación Química, 34(1), 128-155. https://doi.org/10.22201/fq.18708404e.2023.1.82972

Peralta-Yahya, P. P., Zhang, F., Del Cardayre, S. B., & Keasling, J. D. (2012). Microbial engineering for the production of advanced biofuels. Nature, 488(7411), 320-328. https://doi.org/10.1038/nature11478

Pérez-Flores, J. G., Castañeda-Ovando, A., Contreras-López, E., Bautista-Ávila, M., Velázquez-González, C., & Cariño-Cortés, R. (2017). Desarrollo de biopelículas termoplastificadas a base de arabinoxilanos extraídos del bagazo de cebada. Tópicos de Investigación en Ciencias de la Tierra y Materiales, 4, 37-43. https://doi.org/10.29057/aactm.v4i4.9378

Pérez-Flores, J. G., Castañeda-Ovando, A., Velázquez-González, C., Bautista-Ávila, M., & Contreras-López, E. (2022). Arabinoxilanos recuperados de bagazo de cebada y su aplicación como vehículos de liberación de metformina. Tópicos de Investigación en Ciencias de la Tierra y Materiales, 5(5), 163-167. https://doi.org/10.29057/aactm.v5i5.9128

Pérez-Flores, J. G., Contreras-López, E., Castañeda-Ovando, A., Pérez-Moreno, F., Aguilar-Arteaga, K., Álvarez-Romero, G. A., & Téllez-Jurado, A. (2019). Physicochemical characterization of an arabinoxylan-rich fraction from brewers’ spent grain and its application as a release matrix for caffeine. Food Research International, 116, 1020-1030. https://doi.org/10.1016/j.foodres.2018.09.041

Pérez-Flores, J. G., García-Curiel, L., Pérez-Escalante, E., Contreras-López, E., & Olloqui, E. J. (2024). Arabinoxylans matrixes as a potential material for drug delivery systems development—A bibliometric analysis and literature review. Heliyon, 10(3), e25445. https://doi.org/10.1016/j.heliyon.2024.e25445

Perez-Flores, J. G., García-Curiel, L., Pérez-Escalante, E., Paz-Samaniego, R., Contreras-López, E., & Hernández-Hernández, A. A. (2022). Integración de Subproductos Agroalimentarios Dentro de una Economía Circular: El Caso de los Arabinoxilanos Obtenidos de Subproductos del Procesamiento de Cereales. Quimiofilia, 1(1), 12-16. https://doi.org/10.56604/qfla2022121216

Phillips, K. A., Wambaugh, J. F., Grulke, C. M., Dionisio, K. L., & Isaacs, K. K. (2017). High-throughput screening of chemicals as functional substitutes using structure-based classification models. Green Chemistry, 19(4), 1063-1074. https://doi.org/10.1039/C6GC02744J

Piątek, J., Afyon, S., Budnyak, T. M., Budnyk, S., Sipponen, M. H., & Slabon, A. (2021). Sustainable Li‐Ion Batteries: Chemistry and Recycling. Advanced Energy Materials, 11(43), 2003456. https://doi.org/10.1002/aenm.202003456

Pineda, X., Chica, L. P., Sánchez, J. H., Velásquez, J. A., Alarcón, E. A., Villa, A. L., & Martínez, J. J. D. (2015). Desarrollo de un micro-reactor de lecho empacado para la síntesis de acetato de metilo. Revista investigaciones aplicadas, 9(1), 37-43. https://doi.org/10.18566/ria.v09n01.a07

Poliakoff, M., & George, M. W. (2020). Manufacturing chemicals with light: Any role in the circular economy? Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 378(2176), 20190260. https://doi.org/10.1098/rsta.2019.0260

Pražanová, A., Plachý, Z., Kočí, J., Fridrich, M., & Knap, V. (2024). Direct Recycling Technology for Spent Lithium-Ion Batteries: Limitations of Current Implementation. Batteries, 10(3), 81. https://doi.org/10.3390/batteries10030081

Pu, J., Li, Z., Tang, H., Zhou, G., Wei, C., Dong, W., Jin, Z., & He, T. (2023). Response of soil microbial communities and rice yield to nitrogen reduction with green manure application in karst paddy areas. Frontiers in Microbiology, 13, 1070876. https://doi.org/10.3389/fmicb.2022.1070876

Qaswar, M., Huang, J., Ahmed, W., Liu, S., Li, D., Zhang, L., Liu, L., Xu, Y., Han, T., Du, J., Gao, J., & Zhang, H. (2019). Substitution of Inorganic Nitrogen Fertilizer with Green Manure (GM) Increased Yield Stability by Improving C Input and Nitrogen Recovery Efficiency in Rice Based Cropping System. Agronomy, 9(10), 609. https://doi.org/10.3390/agronomy9100609

Quivelli, A. F., Marinò, M., Vitale, P., García‐Álvarez, J., Perna, F. M., & Capriati, V. (2022). Ligand‐Free Copper‐Catalyzed Ullmann‐Type C−O Bond Formation in Non‐Innocent Deep Eutectic Solvents under Aerobic Conditions. ChemSusChem, 15(1), e202102211. https://doi.org/10.1002/cssc.202102211

Rabalao, T. M., Ndaba, B., Roopnarain, A., & Vatsha, B. (2022). Towards a circular economy: The influence of extraction methods on phytosynthesis of metallic nanoparticles and their impact on crop growth and protection. JSFA Reports, 2(5), 208-221. https://doi.org/10.1002/jsf2.44

Ratan, Z. A., Haidere, M. F., Nurunnabi, Md., Shahriar, S. Md., Ahammad, A. J. S., Shim, Y. Y., Reaney, M. J. T., & Cho, J. Y. (2020). Green Chemistry Synthesis of Silver Nanoparticles and Their Potential Anticancer Effects. Cancers, 12(4), 855. https://doi.org/10.3390/cancers12040855

Ren, D., Ren, S., Lin, Y., Xu, J., & Wang, X. (2021). Recent developments of organic solvent resistant materials for membrane separations. Chemosphere, 271, 129425. https://doi.org/10.1016/j.chemosphere.2020.129425

Reyes, K. M. D., Bruce, K., & Shetranjiwalla, S. (2023). Green Chemistry, Life Cycle Assessment, and Systems Thinking: An Integrated Comparative-Complementary Chemical Decision-Making Approach. Journal of Chemical Education, 100(1), 209-220. https://doi.org/10.1021/acs.jchemed.2c00647

Ribba, L., Lopretti, M., Montes De Oca-Vásquez, G., Batista, D., Goyanes, S., & Vega-Baudrit, J. R. (2022). Biodegradable plastics in aquatic ecosystems: Latest findings, research gaps, and recommendations. Environmental Research Letters, 17(3), 033003. https://doi.org/10.1088/1748-9326/ac548d

Ribeiro, M. G. T. C., & Machado, A. A. S. C. (2011). Metal−Acetylacetonate Synthesis Experiments: Which Is Greener? Journal of Chemical Education, 88(7), 947-953. https://doi.org/10.1021/ed100174f

Rivera, I., Villanueva, G., & Sandoval, G. (2009). Producción de biodiesel a partir de residuos grasos animales por vía enzimática. Grasas y Aceites, 60(5), 470-476. https://doi.org/10.3989/gya.021409

Rodríguez-Viveros, N., Paz-Samaniego, R., Hernández-Hernández, A. A., García-Curiel, L., Pérez-Escalante, E., Contreras-López, E., & Pérez-Flores, J. G. (2023). Extracción de arabinoxilanos de subproductos agroindustriales adaptada a la estrategia universal de recuperación de compuestos bioactivos. Investigación y Desarrollo en Ciencia y Tecnología de Alimentos, 8(1), 774-784. https://doi.org/10.29105/idcyta.v8i1.100

Roque, R. M. R., Jamanca, K. M. S., & Zamora, V. M. (2023). Productos Químicos en la Estabilización de Suelos: Evaluación del Impacto Ambiental y Prácticas Sostenibles (1.a ed.). ARCO EDITORES. https://doi.org/10.48209/978-65-5417-149-6

Santiago-Santiago, M., Sánchez-Viveros, G., Santiago Santiago, M., Pariona, N., Hernández-Montiel, L. G., & Chiquito-Contreras, R. G. (2024). ¿La nueva terapia para las plantas? – Los aceites esenciales para control de enfermedades en agricultura. Informacion Tecnica Economica Agraria. https://doi.org/10.12706/itea.2024.005

Santos, S. S. D., Paraíso, C. M., Rodrigues, L. M., & Madrona, G. S. (2021). Agro-industrial waste as a source of bioactive compounds: Ultrasound-assisted extraction from blueberry (Vaccinium myrtillus) and raspberry (Rubus idaeus) pomace. Acta Scientiarum. Technology, 43, e55564. https://doi.org/10.4025/actascitechnol.v43i1.55567

Schneider, N., Lowe, D. M., Sayle, R. A., Tarselli, M. A., & Landrum, G. A. (2016). Big Data from Pharmaceutical Patents: A Computational Analysis of Medicinal Chemists’ Bread and Butter. Journal of Medicinal Chemistry, 59(9), 4385-4402. https://doi.org/10.1021/acs.jmedchem.6b00153

Schyns, Z. O. G., & Shaver, M. P. (2021). Mechanical Recycling of Packaging Plastics: A Review. Macromolecular Rapid Communications, 42(3), 2000415. https://doi.org/10.1002/marc.202000415

Sheldon, R. A. (2020). Biocatalysis and biomass conversion: Enabling a circular economy. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 378(2176), 20190274. https://doi.org/10.1098/rsta.2019.0274

Sheldon, R. A., & Norton, M. (2020). Green chemistry and the plastic pollution challenge: Towards a circular economy. Green Chemistry, 22(19), 6310-6322. https://doi.org/10.1039/D0GC02630A

Sheldon, R. A., & Woodley, J. M. (2018). Role of Biocatalysis in Sustainable Chemistry. Chemical Reviews, 118(2), 801-838. https://doi.org/10.1021/acs.chemrev.7b00203

Shen, Y., Chen, B., & Van Beek, T. A. (2015). Alternative solvents can make preparative liquid chromatography greener. Green Chemistry, 17(7), 4073-4081. https://doi.org/10.1039/C5GC00887E

Sierra, A., Meléndez, L., Ramírez-Monroy, A., & Arroyo, M. (2015). La química verde y el desarrollo sustentable / Green chemistry and sustainable development. RIDE Revista Iberoamericana para la Investigación y el Desarrollo Educativo, 5(9), 1. https://doi.org/10.23913/ride.v5i9.1

Sifontes, Á. B. (2015). Biosíntesis de nanomateriales: Hacia el avance de la nanotecnología verde. Mundo Nano. Revista Interdisciplinaria en Nanociencias y Nanotecnología, 7(13). https://doi.org/10.22201/ceiich.24485691e.2014.13.48709

Sikhakhane Nwokediegwu, Z. Q., & Ugwuanyi, E. D. (2024). Implementing AI-Driven Waste Management Systems in Underserved Communities in the Usa. Engineering Science & Technology Journal, 5(3), 794-802. https://doi.org/10.51594/estj.v5i3.903

Silveira-Gramont, M. I., Aldana-Madrid, M. L., Piri-Santana, J., Valenzuela-Quintanar, A. I., Jasa-Silveira, G., & Rodríguez-Olibarria, G. (2018). Plaguicidas Agricolas: Un Marco De Referencia Para Evaluar Riesgos a La Salud En Comunidades Rurales En El Estado De Sonora, México. Revista Internacional de Contaminación Ambiental, 34(1), 7-21. https://doi.org/10.20937/RICA.2018.34.01.01

Singh, D., Devi, K. B., Ashoka P., Bahadur, R., Kumar, N., Devi, O. R., & Shahni, Y. S. (2023). Green Manure: Aspects and its Role in Sustainable Agriculture. International Journal of Environment and Climate Change, 13(11), 39-45. https://doi.org/10.9734/ijecc/2023/v13i113142

Singh, P. K. (2023). Digital Transformation in Supply Chain Management: Artificial Intelligence (AI) and Machine Learning (ML) as Catalysts for Value Creation. International Journal of Supply Chain Management, 12(6), 57-63. https://doi.org/10.59160/ijscm.v12i6.6216

Sjöström, J. (2006). Green chemistry in perspective—Models for GC activities and GC policy and knowledge areas. Green Chem., 8(2), 130-137. https://doi.org/10.1039/B511316D

Smirnova, S. V., & Apyari, V. V. (2023). Aqueous Two-Phase Systems Based on Cationic and Anionic Surfactants Mixture for Rapid Extraction and Colorimetric Determination of Synthetic Food Dyes. Sensors, 23(7), 3519. https://doi.org/10.3390/s23073519

Sodiya, E. O., Umoga, U. J., Amoo, O. O., & Atadoga, A. (2024). AI-driven warehouse automation: A comprehensive review of systems. GSC Advanced Research and Reviews, 18(2), 272-282. https://doi.org/10.30574/gscarr.2024.18.2.0063

Sotomayor Pineda, J. M., Mora Barrantes, J. C., Afú Méndez, C., López Martínez, J., & Vallejo Salas, M. A. (2021). Evaluación del riesgo químico mediante la aplicación de un índice de seguridad inherente: Un caso de estudio en cursos de docencia de química general en un centro universitario. Revista Tecnología en Marcha. https://doi.org/10.18845/tm.v35i1.5288

Stojanović, I., Šimunović, V., Alar, V., & Kapor, F. (2018). Experimental Evaluation of Polyester and Epoxy–Polyester Powder Coatings in Aggressive Media. Coatings, 8(3), 98. https://doi.org/10.3390/coatings8030098

Stubbs, S., Yousaf, S., & Khan, I. (2022). A review on the synthesis of bio-based surfactants using green chemistry principles. DARU Journal of Pharmaceutical Sciences, 30(2), 407-426. https://doi.org/10.1007/s40199-022-00450-y

Sulochana, D. M. (2024). Green Chemistry Innovations for Sustainable Development.

Tabanelli, T., Cespi, D., & Cucciniello, R. (2021). Sustainable and Environmental Catalysis. Catalysts, 11(2), 225. https://doi.org/10.3390/catal11020225

Teh, S. Y., Chua, K. B., Hong, B. H., Ling, A. J. W., Andiappan, V., Foo, D. C. Y., Hassim, M. H., & Ng, D. K. S. (2019). A Hybrid Multi-Objective Optimization Framework for Preliminary Process Design Based on Health, Safety and Environmental Impact. Processes, 7(4), 200. https://doi.org/10.3390/pr7040200

Tobiszewski, M., Marć, M., Gałuszka, A., & Namieśnik, J. (2015). Green Chemistry Metrics with Special Reference to Green Analytical Chemistry. Molecules, 20(6), 10928-10946. https://doi.org/10.3390/molecules200610928

Torres-Gómez, N., Ávila-Avilés, R. D., & Vilchis-Nestor, A. R. (2020). Biosíntesis y caracterización de nanoestructuras por microscopía electrónica. Mundo Nano. Revista Interdisciplinaria en Nanociencias y Nanotecnología, 13(25), 29-43. https://doi.org/10.22201/ceiich.24485691e.2020.25.69637

Umar, A., Munir, M., Riaz, M., Murtaza, M., Sultana, R., Srinivasan, G., Firdous, A., & Saeed, M. (2019). Properties and green applications based review on highly efficient deep eutectic solvents. Egyptian Journal of Chemistry, 0(0), 0-0. https://doi.org/10.21608/ejchem.2019.12604.1782

Valmir, S., Ricardo, F. B. S., Luiz, C. O., & Vanessa, V. (2014). Alternatives for remediation and decontamination of soils from Brazil. African Journal of Agricultural Research, 9(43), 3197-3204. https://doi.org/10.5897/AJAR2014.8920

Veleva, V., & W. Cue Jr, B. (2017). Benchmarking green chemistry adoption by “big pharma” and generics manufacturers. Benchmarking: An International Journal, 24(5), 1414-1436. https://doi.org/10.1108/BIJ-01-2016-0003

Verma, D. (2018). Analysis of Smart Manufacturing Technologies for Industry Using AI Methods. Turkish Journal of Computer and Mathematics Education (TURCOMAT), 9(2), 529-540. https://doi.org/10.17762/turcomat.v9i2.13857

Villalobos-González, W., Sibaja-Brenes, J. P., Mora-Barrantes, J. C., & Álvarez-Garay, B. (2021). Evaluación de los riesgos químicos por inhalación de las sustancias utilizadas en una industria gráfica. Revista Tecnología en Marcha. https://doi.org/10.18845/tm.v34i2.4977

Vollmer, I., Jenks, M. J. F., Roelands, M. C. P., White, R. J., Van Harmelen, T., De Wild, P., Van Der Laan, G. P., Meirer, F., Keurentjes, J. T. F., & Weckhuysen, B. M. (2020). Beyond Mechanical Recycling: Giving New Life to Plastic Waste. Angewandte Chemie International Edition, 59(36), 15402-15423. https://doi.org/10.1002/anie.201915651

Wagner, G. W., Procell, L. R., Sorrick, D. C., Lawson, G. E., Wells, C. M., Reynolds, C. M., Ringelberg, D. B., Foley, K. L., Lumetta, G. J., & Blanchard, D. L. (2010). All-Weather Hydrogen Peroxide-Based Decontamination of CBRN Contaminants. Industrial & Engineering Chemistry Research, 49(7), 3099-3105. https://doi.org/10.1021/ie9019177

Wang, H. (2024). Linking AI supply chain strength to sustainable development and innovation: A country‐level analysis. Expert Systems, 41(5), e12973. https://doi.org/10.1111/exsy.12973

Wang, J., Ayari, M. A., Khandakar, A., Chowdhury, M. E. H., Uz Zaman, S. A., Rahman, T., & Vaferi, B. (2022). Estimating the Relative Crystallinity of Biodegradable Polylactic Acid and Polyglycolide Polymer Composites by Machine Learning Methodologies. Polymers, 14(3), 527. https://doi.org/10.3390/polym14030527

Wang, Z., Liu, Y., Dong, X., & Sun, Y. (2021). Cobalt Phosphate Nanocrystals: A Catalase-Like Nanozyme and In Situ Enzyme-Encapsulating Carrier for Efficient Chemoenzymatic Synthesis of α-Keto Acid. ACS Applied Materials & Interfaces, 13(42), 49974-49981. https://doi.org/10.1021/acsami.1c15043

Xia, L., Ling, J., Xu, Z., Bi, R., Zhao, W., & Xiang, S. (2022). Application of sequential quadratic programming based on active set method in cleaner production. Clean Technologies and Environmental Policy, 24(1), 413-422. https://doi.org/10.1007/s10098-021-02207-8

Xia, T. X., Yao, J. J., Zhong, M. S., & Jia, X. Y. (2013). Field Study on Remediation of PAHs Contaminated Soil by Ex Situ Technologies at a Coking Site. Advanced Materials Research, 773, 744-748. https://doi.org/10.4028/www.scientific.net/AMR.773.744

Yabré, M., Ferey, L., Somé, I. T., & Gaudin, K. (2018). Greening Reversed-Phase Liquid Chromatography Methods Using Alternative Solvents for Pharmaceutical Analysis. Molecules, 23(5), 1065. https://doi.org/10.3390/molecules23051065

Yadav, G. D., & Desai, N. M. (2005). Selectivity Engineering of Phase Transfer Catalyzed Alkylation of 2‘-Hydroxyacetophenone: Enhancement in Rates and Selectivity by Creation of a Third Liquid Phase. Organic Process Research & Development, 9(6), 749-756. https://doi.org/10.1021/op050086m

Yang, R., Xu, G., Dong, B., Hou, H., & Wang, Q. (2022). A “Polymer to Polymer” Chemical Recycling of PLA Plastics by the “DE–RE Polymerization” Strategy. Macromolecules, 55(5), 1726-1735. https://doi.org/10.1021/acs.macromol.1c02085

Yao, Z., Li, B., & Li, C. (2023). Distribution properties of ultraviolet absorbents in different species of biodegradable plastics. Waste Management & Research: The Journal for a Sustainable Circular Economy, 41(9), 1453-1459. https://doi.org/10.1177/0734242X231159842

Younis, H., Sundarakani, B., & Alsharairi, M. (2022). Applications of artificial intelligence and machine learning within supply chains:systematic review and future research directions. Journal of Modelling in Management, 17(3), 916-940. https://doi.org/10.1108/JM2-12-2020-0322

Yu, Y., & Flury, M. (2024). Unlocking the Potentials of Biodegradable Plastics with Proper Management and Evaluation at Environmentally Relevant Concentrations. Npj Materials Sustainability, 2(1), 9. https://doi.org/10.1038/s44296-024-00012-0

Zahrt, A. F., Henle, J. J., Rose, B. T., Wang, Y., Darrow, W. T., & Denmark, S. E. (2019). Prediction of higher-selectivity catalysts by computer-driven workflow and machine learning. Science, 363(6424), eaau5631. https://doi.org/10.1126/science.aau5631

Zamora-Valencia, C. A., Reyes-Valderrama, M. I., Salado-Lesa, D. E., & Rodriguez-Lugo, V. (2023). Síntesis hidrotermal de puntos cuánticos de carbono PEGilados. Pädi Boletín Científico de Ciencias Básicas e Ingenierías del ICBI, 11(Especial5), 35-43. https://doi.org/10.29057/icbi.v11iEspecial5.11840

Zhong, H., Liu, K., Zhang, Q., Meng, F., Bao, D., & Zhang, X. (2020). Copper tetrazolate based metal‐organic frameworks as highly efficient catalysts for artificially chemical and electrochemical CO2 conversion. Nano Select, 1(3), 311-319. https://doi.org/10.1002/nano.202000041

Zúñiga-Martínez, S., Ibáñez-Hernández, O. F., Salas Plata-Mendoza, J. A., Flores-Tavizón, E., & Velázquez-Angulo, G. (2022). Métodos de remoción de metales en aguas para consumo humano: Una revisión. Cultura Científica y Tecnológica, 19(2). https://doi.org/10.20983/culcyt.2022.2.3.1

Descargas

Publicado

2025-05-21

Cómo citar

Piña-Aguilar, F. ., Contreras-López, E. ., Pérez-Flores, J. G., García-Curiel, L. ., Salazar-Pereda, V. ., & González-Olivares, L. G. . (2025). Química verde: Una revisión de sus principios y aplicaciones industriales. Pädi Boletín Científico De Ciencias Básicas E Ingenierías Del ICBI, 13(25), 37–61. https://doi.org/10.29057/icbi.v13i25.13805

Número

Sección

Artículos de revisión