Análisis integral de series electrofisiológicas: variabilidad cardiaca de hipertensos
DOI:
https://doi.org/10.29057/icbi.v13iEspecial.13814Palabras clave:
Mapas de Poincaré, cadenas de Markov, Medida de Correlación Compleja (MCC), Variabilidad de la Frecuencia Cardíaca (VFC), hipertensos, 2000 MSC: 92B05, 60J20, 05C90, 37N25Resumen
El análisis de series de tiempo electrofisiológicas es esencial en la investigación biomédica o biofísica debido a su capacidad para revelar patrones complejos en datos biológicos, indicativos de diversas condiciones de salud, incluso en etapas tempranas. Técnicas como el análisis de la variabilidad del ritmo cardiaco, los mapas de Poincaré y las cadenas de Markov son utilizadas en este estudio. A través de casos de estudio prácticos, se ha utilizado el software AnalyzerSignal, el cual ha demostrado su capacidad para asistir en el análisis integral de datos electrofisiológicos al combinar herramientas estadísticas clásicas, sistemas dinámicos, procesos estocásticos y teoría de grafos. Los resultados encontrados muestran diferencias entre los ángulos formados en la dinámica temporal a partir de los mapas de Poincaré entre normotensos versos hipertensos. Este enfoque integrado ofrece una comprensión más profunda y detallada de la variabilidad cardiaca de participantes normotensos y pacientes hipertensos, facilitando la identificación de patrones que podrían pasar desapercibidos con métodos convencionales.
Descargas
Información de Publicación
Perfiles de revisores N/D
Declaraciones del autor
Indexado en
- Sociedad académica
- N/D
Citas
Allen, J. J. (2002). Calculating metrics of cardiac chronotropy: A pragmatic overview. Psychophysiology, 39(S18).
Allen, J. J., Chambers, A. S., y Towers, D. N. (2007). The many metrics of cardiac chronotropy: A pragmatic primer and a brief comparison of metrics. Biological psychology, 74(2):243–262.
AlMahameed, S. T. y Ziv, O. (2019). Ventricular arrhythmias. Medical Clinics, 103(5):881–895.
Brennan, M., Palaniswami, M., y Kamen, P. (2001). Do existing measures of poincare plot geometry reflect nonlinear features of heart rate variability? IEEE Transactions on Biomedical Engineering, 48(11):1342–1347.
Cai, P. K. J. y Miklavcic, S. (2013). Improved ellipse fitting by considering the eccentricity of data point sets. En 2013 IEEE International Conference on Image Processing, pp. 815–819.
Cashman, P. M. M. (1977). The use of r-r interval and difference histograms in classifying disorders of sinus rhythm: Original articles. Journal of Medical
Engineering & Technology, 1(1):20–28.
Choi, K., Yi, J., Park, C., y Yoon, S. (2021). Deep learning for anomaly detection in time-series data: Review, analysis, and guidelines. IEEE Access, 9:120043–120065.
Durstewitz, D., Huys, Q. J., y Koppe, G. (2021). Psychiatric illnesses as disorders of network dynamics. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 6(9):865–876.
Faust, O. y Acharya, U. R. (2021). Automated classification of five arrhythmias and normal sinus rhythm based on rr interval signals. Expert Systems with Applications, 181:115031.
Fisher, J. P., Zera, T., y Paton, J. F. (2022). Chapter 10 - respiratory–cardiovascular interactions. En Chen, R. y Guyenet, P. G., editores, Respiratory Neurobiology, volumen 188 de Handbook of Clinical Neurology, pp. 279–308. Elsevier.
Fishman, M., Jacono, F. J., Park, S., Jamasebi, R., Thungtong, A., Loparo, K. A., y Dick, T. E. (2012). A method for analyzing temporal patterns of variability
of a time series from Poincaré plots. Journal of Applied Physiology, 113(2):297–306.
Fu, D.-g. (2015). Cardiac arrhythmias: diagnosis, symptoms, and treatments. Cell biochemistry and biophysics, 73(2):291–296.
González, C., Jensen, E. W., Gambús, P. L., y Vallverdú, M. (2018). Poincaré plot analysis of cerebral blood flow signals: Feature extraction and classification
methods for apnea detection. PLOS ONE, 13(12):e0208642.
Goodwin, A. J., Eytan, D., Greer, R.W., Mazwi, M., Thommandram, A., Goodfellow, S. D., Assadi, A., Jegatheeswaran, A., y Laussen, P. C. (2020). A
practical approach to storage and retrieval of high-frequency physiological signals. Physiological Measurement, 41(3):035008.
Guzik, P., Piskorski, J., Krauze, T., Schneider, R., Wesseling, K. H., Wykretowicz, A., y Wysocki, H. (2007). Correlations between the Poincaré plot
and conventional heart rate variability parameters assessed during paced breathing. The Journal of Physiological Sciences, 57(1):63–71.
Ihmig, F. R., Gogeascoechea, A., Schäfer, S., Lass-Hennemann, J., y Michael, T. (2020). Electrocardiogram, skin conductance and respiration from spiderfearful
individuals watching spider video clips. Karmakar, C. K., Khandoker, A. H., Gubbi, J., y Palaniswami, M. (2009). Complex correlation measure: a novel descriptor for Poincaré plot. BioMedical Engineering OnLine, 8(1):17.
Larsen, P., Tzeng, Y., Sin, P., y Galletly, D. (2010). Respiratory sinus arrhythmia in conscious humans during spontaneous respiration. Respiratory physiology & neurobiology, 174(1-2):111–118.
Lerma, C., Infante, O., P´erez-Grovas, H., y Jos´e, M. V. (2003). Poincaré plot indexes of heart rate variability capture dynamic adaptations after haemodialysis
in chronic renal failure patients. Clinical Physiology and Functional Imaging, 23(2):72–80.
Lubocka, P. y Sabiniewicz, R. (2021). Respiratory sinus arrhythmia in children—predictable or random? Frontiers in Cardiovascular Medicine,
:643846.
Morrill, J. H., Kormilitzin, A., Nevado-Holgado, A. J., Swaminathan, S., Howison, S. D., y Lyons, T. J. (2020). Utilization of the signature method to identify the early onset of sepsis from multivariate physiological time series in critical care monitoring. Critical Care Medicine, 48(10):e976–e981.
Piskorski, J. y Guzik, P. (2005). Filtering poincar´e plots. Computational methods in science and technology, 11(1):39–48.
Poole, D. (2016). Álgebra lineal. Una introducción moderna. Cengage Learning, 4a edición.
Rodriguez-Torres, E. E., Azpeitia-Cruz, M. F., Escamilla-Muñoz, J., y Vázquez-Mendoza, I. (2024). Analyzing respiratory sinus arrhythmia: A markov chain approach with hypertensive patients and arachnophobic individuals. Muscles, 3(2):177–188.
Rodriguez-Torres, E. E., Tetlalmatzi-Montiel, M., y Villarroel Flores, R. (2018). Visualización de series de tiempo en python. P¨adi, Bolet´ın científico del ICBI,
(11):52–57.
Rojas-Vite, G., García-Muñoz, V., Rodríguez-Torres, E. E., y Mateos-Salgado, E. L. (2022). Linear and nonlinear analysis of heart rate variability in essential
hypertensive patients. The European Physical Journal Special Topics, 231(5):859–867.
Tayel, M. B. y AlSaba, E. I. (2015). Poincaré plot for heart rate variability. International Journal of Biomedical and Biological Engineering, 9(9):708–
Taylor, H. y Karlin, S. (1998). An Introduction to Stochastic Modeling. Elsevier Science, 3rd edición.
Tran, D. T., Vo, H. T., Nguyen, D. D., Nguyen, Q. M., Huynh, L. T., Le, L. T., Do, H. T., y Quan, T. T. (2018). A predictive model for ecg signals collected from specialized iot devices using deep learning. En 2018 5th NAFOSTED Conference on Information and Computer Science (NICS), pp. 424–429.
Tulppo, M. P., Makikallio, T. H., Takala, T. E., Seppanen, T., y Huikuri, H. V. (1996). Quantitative beat-to-beat analysis of heart rate dynamics during
exercise. American Journal of Physiology-Heart and Circulatory Physiology, 271(1):H244–H252.
Upadhyay, G. A. y Singh, J. P. (2014). Bradycardia and pacemakers/crt. En Gaggin, H. K. y Januzzi, Jr., J. L., editores, MGH Cardiology Board Review,
pp. 423–438. Springer London, London.
Van Rossum, G. y Drake, F. L. (2009). Python 3 Reference Manual. CreateSpace, Scotts Valley, CA. Waxenbaum, J. A., Reddy, V., y Varacallo, M. (2023). Anatomy, Autonomic
Nervous System. StatPearls Publishing, Treasure Island (FL).
Weinberg, C. y Pfeifer, M. (1984). An improved method for measuring heartrate variability: assessment of cardiac autonomic function. Biometrics, pp. 855–861.
Xu, T. L., de Barbaro, K., Abney, D. H., y Cox, R. F. A. (2020). Finding structure in time: Visualizing and analyzing behavioral time series. Frontiers in Psychology, 11.
Yao, L., Liu, C., Li, P., Wang, J., Liu, Y., Li, W., Wang, X., Li, H., y Zhang, H. (2020). Enhanced automated diagnosis of coronary artery disease using features
extracted from qt interval time series and st–t waveform. IEEE Access, 8:129510–129524.
Zheng, M., Domanskyi, S., Piermarocchi, C., y Mias, G. I. (2021). Visibility graph based temporal community detection with applications in biological time series. Scientific Reports, 11(1).