Desarrollo histórico del Modelo Estándar

Autores/as

DOI:

https://doi.org/10.29057/icbi.v13iEspecial.13894

Palabras clave:

Modelo estándar, interacciones fundamentales, historia de la física moderna.

Resumen

En este trabajo mostramos el desarrollo de diferentes modelos que llevaron finalmente a la obtención del Modelo Estándar de partículas elementales (SM, por sus siglas en inglés). Partiendo del experimento del cual se descubrió que los átomos consistían de un núcleo denso rodeado de una nube de electrones, se muestran los experimentos que fueron clave para el desarrollo de dichos modelos y la obtención del Modelo Estandar.

Descargas

Los datos de descargas todavía no están disponibles.

Información de Publicación

Metric
Este artículo
Otros artículos
Revisores por pares 
2.4 promedio

Perfiles de revisores  N/D

Declaraciones del autor

Declaraciones del autor
Este artículo
Otros artículos
Disponibilidad de datos 
N/A
16%
Financiamiento externo 
No
32% con financiadores
Intereses conflictivos 
N/D
11%
Metric
Para esta revista
Otras revistas
Artículos aceptados 
86%
33%
Días hasta la publicación 
201
145

Indexado en

Editor y comité editorial
perfiles
Sociedad académica 
N/D

Citas

Aad, G. et al. (2012). Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC. Phys. Lett. B, 716:1–29.

Abachi, S. et al. (1995). Observation of the top quark. Phys. Rev. Lett., 74:2632–2637.

Abe, F. et al. (1995). Observation of top quark production in ̄pp collisions. Phys. Rev. Lett., 74:2626–2631.

Bardeen, W. A., Fritzsch, H., and Gell-Mann, M. (1972). Light cone current algebra, π0 decay, and e+ e− annihilation. In Topical Meeting on the Outlook for Broken Conformal Symmetry in Elementary Particle Physics.

Barnes, V. E. et al. (1964). Observation of a Hyperon with Strangeness Minus Three. Phys. Rev. Lett., 12:204–206.

Bjorken, J. D. (1969). Asymptotic Sum Rules at Infinite Momentum. Phys. Rev., 179:1547–1553.

Bouchiat, C. and Michel, L. (1957). Theory of μ-Meson Decay with the Hypothesis of Nonconservation of Parity. Phys. Rev., 106:170–172.

Brueckner, K. A. (1952). Meson-Nucleon Scattering and Nucleon Isobars. Phys. Rev., 86:106–109.

Chadwick, J. (1932). Possible Existence of a Neutron. Nature, 129:312.

Chatrchyan, S. et al. (2012). Observation of a New Boson at a Mass of 125GeV with the CMS Experiment at the LHC. Phys. Lett. B, 716:30–61.

Christenson, J. H., Cronin, J. W., Fitch, V. L., and Turlay, R. (1964). Evidence for the 2π Decay of the K02 Meson. Phys. Rev. Lett., 13:138–140.

Danby, G., Gaillard, J. M., Goulianos, K. A., Lederman, L. M., Mistry, N. B., Schwartz, M., and Steinberger, J. (1962). Observation of High-Energy Neutrino Reactions and the Existence of Two Kinds of Neutrinos. Phys. Rev. Lett., 9:36–44.

Englert, F. and Brout, R. (1964). Broken Symmetry and the Mass of Gauge Vector Mesons. Phys. Rev. Lett., 13:321-323.

Fermi, E. (1933). Tentativo di una teoria dell’emissione dei raggi beta. Ric. Sci., 4:491–495.

Fermi, E. (1934). An attempt of a theory of beta radiation. 1. Z. Phys., 88:161–177.

Feynman, R. P. (1948a). A Relativistic cutoff for classical electrodynamics. Phys. Rev., 74:939–946.

Feynman, R. P. (1948b). Relativistic cutoff for quantum electrodynamics. Phys. Rev., 74:1430–1438.

Feynman, R. P. (1948c). Space-time approach to nonrelativistic quantum mechanics. Rev. Mod. Phys., 20:367–387.

Feynman, R. P. and Gell-Mann, M. (1958). Theory of Fermi interaction. Phys. Rev., 109:193–198.

Gamow, G. and Teller, E. (1936). Selection rules for the beta-disintegration. Phys. Rev., 49:895–899.

Garwin, R. L., Lederman, L. M., and Weinrich, M. (1957). Observations of the Failure of Conservation of Parity and Charge Conjugation in Meson Decays: The Magnetic Moment of the Free Muon. Phys. Rev., 105:1415–1417.

Gell-Mann, M. (1956). The interpretation of the new particles as displaced charge multiplets. Nuovo Cim., 4(S2):848–866.

Gell-Mann, M. (1961). The Eightfold Way: A Theory of strong interaction symmetry.

Gell-Mann, M. (1964). A Schematic Model of Baryons and Mesons. Phys. Lett., 8:214–215.

Gell-Mann, M. and Levy, M. (1960). The axial vector current in beta decay. Nuovo Cim., 16:705.

Glashow, S. L. (1961). Partial Symmetries of Weak Interactions. Nucl. Phys., 22:579–588.

Glashow, S. L., Iliopoulos, J., and Maiani, L. (1970). Weak Interactions with Lepton-Hadron Symmetry. Phys. Rev. D, 2:1285–1292.

Goldstone, J. (1961). Field Theories with Superconductor Solutions. Nuovo Cim., 19:154–164.

Goldstone, J., Salam, A., and Weinberg, S. (1962). Broken Symmetries. Phys. Rev., 127:965–970.

Guevara, A. (2017). Low-energy meson phenomenology with Resonance Chiral Lagrangians. PhD thesis, CINVESTAV-IPN.

Han, M. Y. and Nambu, Y. (1965). Three Triplet Model with Double SU(3) Symmetry. Phys. Rev., 139:B1006–B1010.

Heisenberg, W. (1932). On the structure of atomic nuclei. Z. Phys., 77:1–11.

Herb, S. W. et al. (1977). Observation of a Dimuon Resonance at 9.5-GeV in 400-GeV Proton-Nucleus Collisions. Phys. Rev. Lett., 39:252–255.

Higgs, P. W. (1964). Broken Symmetries and the Masses of Gauge Bosons. Phys. Rev. Lett., 13:508–509.

Higgs, P. W. (1966). Spontaneous Symmetry Breakdown without Massless Bosons. Phys. Rev., 145:1156–1163.

Kobayashi, M. and Maskawa, T. (1973). CP Violation in the Renormalizable Theory of Weak Interaction. Prog. Theor. Phys., 49:652–657.

Kodama, K. et al. (2001). Observation of tau neutrino interactions. Phys. Lett. B, 504:218–224.

Lee, T. D. and Yang, C.-N. (1956). Question of Parity Conservation in Weak Interactions. Phys. Rev., 104:254–258.

Michel, L. (1950). Interaction between four half spin particles and the decay of the μ meson. Proc. Phys. Soc. A, 63:514–531.

Nakano, T. and Nishijima, K. (1953). Charge Independence for V-particles. Prog. Theor. Phys., 10:581–582.

Ne’eman, Y. (1961). Derivation of strong interactions from a gauge invariance. Nucl. Phys., 26:222–229.

Nishijima, K. (1955). Charge Independence Theory of V Particles. Prog. Theor. Phys., 13(3):285–304.

Perl, M. L. et al. (1975). Evidence for Anomalous Lepton Production in e+ - e- Annihilation. Phys. Rev. Lett., 35:1489–1492.

Rutherford, E. (1911). The scattering of alpha and beta particles by matter and the structure of the atom. Phil. Mag. Ser. 6, 21:669–688.

Sakata, S. (1956). On a Composite Model for the New Particles. Prog. Theor. Phys., 16:686–688.

Salam, A. (1957). On parity conservation and neutrino mass. Nuovo Cim., 5:299–301.

Salam, A. (1968). Weak and Electromagnetic Interactions. Conf. Proc. C, 680519:367–377.

Salam, A. and Ward, J. C. (1960). Delta I = 1/2 rule. Phys. Rev. Lett., 5:390.

Schwinger, J. S. (1948a). Quantum electrodynamics. 2. Vacuum polarization and selfenergy. Phys. Rev., 75:651.

Schwinger, J. S. (1948b). Quantum electrodynamics. I A covariant formulation. Phys. Rev., 74:1439.

Schwinger, J. S. (1949). Quantum electrodynamics. III: The electromagnetic properties of the electron: Radiative corrections to scattering. Phys. Rev., 76:790–817.

Schwinger, J. S. (1957). A Theory of the Fundamental Interactions. Annals Phys., 2:407–434.

Sudarshan, E. C. G. and Marshak, R. e. (1958). Chirality invariance and the universal Fermi interaction. Phys. Rev., 109:1860–1860.

Tomonaga, S. (1946). On a relativistically invariant formulation of the quantum theory of wave fields. Prog. Theor. Phys., 1:27–42.

Weinberg, S. (1967). A Model of Leptons. Phys. Rev. Lett., 19:1264–1266.

Wu, C. S., Ambler, E., Hayward, R. W., Hoppes, D. D., and Hudson, R. P. (1957). Experimental Test of Parity Conservation in β Decay. Phys. Rev., 105:1413–1414.

Zweig, G. (1964a). An SU(3) model for strong interaction symmetry and its breaking. Version 1.

Zweig, G. (1964b). An SU(3) model for strong interaction symmetry and its breaking. Version 2, pages 22–101.

Descargas

Publicado

2025-04-21

Cómo citar

Guevara, A., & Hernández-Tomé, G. . (2025). Desarrollo histórico del Modelo Estándar. Pädi Boletín Científico De Ciencias Básicas E Ingenierías Del ICBI, 13(Especial), 186–196. https://doi.org/10.29057/icbi.v13iEspecial.13894

Número

Sección

Artículos de investigación