Optimización de la producción de biodiesel con catalizadores de K/CaO
Palabras clave:
biodiesel, K/CaO, cáscara de huevo, Box-Behnken, transesterificaciónResumen
En este trabajo se optimizaron las condiciones de reacción de la transesterificación de aceite de canola usando el sistema K/CaO. Se sintetizaron tres series con distintas cantidades de K, 3, 6 y 9 %p/p, a tres temperaturas de calcinación, 500, 650, 800 °C. Se encontró que el rendimiento de biodiesel aumenta con la cantidad de K debido a la mayor cantidad de sitios activos. Igualmente, a 800 °C se alcanzó el mayor rendimiento, ya que las especies de KNO3 se han descompuesto en su totalidad. Así, el catalizador K6800 mostró un rendimiento de 85% indicando que sus sitios son accesibles condicionados por la dispersión del K. La optimización de superficie de respuesta Box-Behnken usó como factores a la temperatura a la relación molar metanol/aceite y el tiempo de reacción. El modelo fue confiable y con él se encontró el punto máximo de rendimiento (94 %) a 61.1 °C, una relación metanol/aceite=11.9 y un tiempo de 120 min.
Descargas
Información de Publicación
Perfiles de revisores N/D
Declaraciones del autor
Indexado en
- Sociedad académica
- N/D
Citas
Atadashi, I. M., Aroua, M. K., Abdul Aziz, A. R., & Sulaiman, N. M. N. (2012). The effects of water on biodiesel production and refining technologies: A review. Renewable and Sustainable Energy Reviews, 16(5), 3456–3470. DOI: 10.1016/j.rser.2012.03.004
Dianursanti, Delaamira, M., Bismo, S., & Muharam, Y. (2017). Effect of Reaction Temperature on Biodiesel Production from Chlorella vulgaris using CuO/Zeolite as Heterogeneous Catalyst. IOP Conference Series: Earth and Environmental Science, 55(1), 12033. https://doi.org/10.1088/1755-1315/55/1/012033
Emeji, I. C., & Patel, B. (2024). Box-Behnken assisted RSM and ANN modelling for biodiesel production over titanium supported zinc-oxide catalyst. Energy, 308, 132765. DOI: 10.1016/j.energy.2024.132765
Farouk, S. M., Tayeb, A. M., Abdel-Hamid, S. M. S., & Osman, R. M. (2024). Recent advances in transesterification for sustainable biodiesel production, challenges, and prospects: a comprehensive review. Environmental Science and Pollution Research, 31(9), 12722–12747. https://doi.org/10.1007/s11356-024-32027-4
Glisic, S. B., Pajnik, J. M., & Orlović, A. M. (2016). Process and techno-economic analysis of green diesel production from waste vegetable oil and the comparison with ester type biodiesel production. Applied Energy, 170, 176–185. DOI: 10.1016/j.apenergy.2016.02.102
Gupta, D., & Gaur, S. K. (2019). 19 - Carbon and biofuel footprinting of global production of biofuels. In D. Verma, E. Fortunati, S. Jain, & X. B. T.-B. Zhang Biopolymer-Based Materials, and Bioenergy (Eds.), Woodhead Publishing Series in Composites Science and Engineering (pp. 449–481). Woodhead Publishing. DOI: 10.1016/B978-0-08-102426-3.00019-9
Hernández-Martínez, M. A., Rodriguez, J. A., Chavez-Esquivel, G., Ángeles-Beltrán, D., & Tavizón-Pozos, J. A. (2023). Canola oil transesterification for biodiesel production using potassium and strontium supported on calcium oxide catalysts synthesized from oyster shell residues. Next Materials, 1(4), 100033. DOI: 10.1016/j.nxmate.2023.100033
Jimoh, A., Agbaji, B. E., Ajibola, V. O., & Uba, S. (2023). Optimization of the Production of Methyl Ester from Used cotton Seed Oil: A Statistical Approach Using Box-behnken Design. Chemical Review and Letters, 6(2), 183–212. https://doi.org/10.22034/crl.2023.359632.1179
Khatibi, M., Khorasheh, F., & Larimi, A. (2021). Biodiesel production via transesterification of canola oil in the presence of Na–K doped CaO derived from calcined eggshell. Renewable Energy, 163, 1626–1636. DOI: 10.1016/j.renene.2020.10.039
Kibar, M. E., Hilal, L., Çapa, B. T., Bahçıvanlar, B., & Abdeljelil, B. Ben. (2023). Assessment of Homogeneous and Heterogeneous Catalysts in Transesterification Reaction: A Mini Review. ChemBioEng Reviews, 10(4), 412–422. DOI: 10.1002/cben.202200021
Kouzu, M., Hidaka, J., Wakabayashi, K., & Tsunomori, M. (2010). Solid base catalysis of calcium glyceroxide for a reaction to convert vegetable oil into its methyl esters. Applied Catalysis A: General, 390(1), 11–18. DOI: 10.1016/j.apcata.2010.09.029
Kramer, C. M., & Munir, Z. A. (1981). Thermal Decomposition of NaNO3 and KNO3*. ECS Proceedings Volumes, 1981–9(1), 494. https://doi.org/10.1149/198109.0494PV
Krishnamurthy, K. N., Sridhara, S. N., & Ananda Kumar, C. S. (2020). Optimization and kinetic study of biodiesel production from Hydnocarpus wightiana oil and dairy waste scum using snail shell CaO nano catalyst. Renewable Energy, 146, 280–296. DOI: 10.1016/j.renene.2019.06.161
Kumar, D., & Ali, A. (2012). Nanocrystalline K–CaO for the transesterification of a variety of feedstocks: Structure, kinetics and catalytic properties. Biomass and Bioenergy, 46, 459–468. DOI: 10.1016/j.biombioe.2012.06.040
Lee, S. B., Han, K. H., Lee, J. D., & Hong, I. K. (2010). Optimum process and energy density analysis of canola oil biodiesel synthesis. Journal of Industrial and Engineering Chemistry, 16(6), 1006–1010. DOI: 10.1016/j.jiec.2010.09.015
Liu, X., He, H., Wang, Y., Zhu, S., & Piao, X. (2008). Transesterification of soybean oil to biodiesel using CaO as a solid base catalyst. Fuel, 87(2), 216–221. DOI: 10.1016/j.fuel.2007.04.013
Maisarah, Nurhayati, & Linggawati, A. (2020). Transesterification of Crude Palm Oil (CPO) to Biodiesel Using Heterogeneous Catalyst K-CaO from Anadara Granosa Synthesized by Sol Gel Method. Journal of Physics: Conference Series, 1655(1), 12035. https://doi.org/10.1088/1742-6596/1655/1/012035
Olivares, R. I., & Edwards, W. (2013). LiNO3–NaNO3–KNO3 salt for thermal energy storage: Thermal stability evaluation in different atmospheres. Thermochimica Acta, 560, 34–42. DOI: 10.1016/j.tca.2013.02.029
Olvera, D., Rodriguez, J. A., Perez-Silva, I., Chavez-Esquivel, G., & Tavizon-Pozos, J. A. (2022). Catalytic evaluation of Li and K supported on CaO in the transesterification of triolein, triestearin, and tributyrin. Chemical Papers, 76(10), 6287-6295. DOI: https://doi.org/10.1007/s11696-022-02305-x
Rokni, K., Mostafaei, M., Dehghani Soufi, M., & Kahrizi, D. (2022). Microwave-assisted intensification of transesterification reaction for biodiesel production from camelina oil: Optimization by Box-Behnken Design. Bioresource Technology Reports, 17, 100928. DOI: 10.1016/j.biteb.2021.100928
Soares Dias, A. P., Puna, J., Gomes, J., Neiva Correia, M. J., & Bordado, J. (2016). Biodiesel production over lime. Catalytic contributions of bulk phases and surface Ca species formed during reaction. Renewable Energy, 99, 622–630. DOI: 10.1016/j.renene.2016.07.033
Tavizón-Pozos, J. A., Chavez-Esquivel, G., Suárez-Toriello, V. A., Santolalla-Vargas, C. E., Luévano-Rivas, O. A., Valdés-Martínez, O. U., Talavera-López, A., & Rodriguez, J. A. (2021). State of Art of Alkaline Earth Metal Oxides Catalysts Used in the Transesterification of Oils for Biodiesel Production. In Energies (Vol. 14, Issue 4). https://doi.org/10.3390/en14041031
Tavizón-Pozos, J. A., Ibarra, I. S., Guevara-Lara, A., & Galán-Vidal, C. A. (2020). Application of Design of Experiments in Biofuel Production: A Review. In Design of Experiments for Chemical, Pharmaceutical, Food, and Industrial Applications (pp. 77–103). IGI Global.
Verma, P., & Sharma, M. P. (2016). Review of process parameters for biodiesel production from different feedstocks. Renewable and Sustainable Energy Reviews, 62, 1063–1071. DOI: 10.1016/j.rser.2016.04.054
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2025 Rodrigo Barrera Gutiérrez, David Marín Lugo, Gabriela Alejandra Vázquez Rodríguez, Gerardo Chávez Esquivel, Jesús Andrés Tavizón Pozos

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.