Avances en la procesabilidad y termosellado de películas de polietileno reciclado y polímeros bio-basados para empaques flexibles.
Palabras clave:
termosellado, PEBD reciclado, almidón termoplástico, biocompuestos plásticos, empaques flexiblesResumen
La industria de empaques ha requerido de cambios drásticos en sus materias primas tradicionales para la fabricación de bolsas flexibles de un solo uso para poder satisfacer los requerimientos de sostenibilidad actuales del mercado. La demanda actual del mercado va encaminada cada vez más al uso de materiales reciclados, bio-basados o con propiedades de biodegradabilidad o compostabilidad, por lo que es importante entender los efectos de estos cambios en el desempeño del producto de empaque final. Entre las propiedades de desempeño más importantes se encuentra la fuerza de sello de películas flexibles, pues esta propiedad asegura la integridad de empaques de tipo bolsa. Este artículo de revisión explora los avances recientes en la fuerza de sello de películas flexibles compuestas de plásticos reciclados y biodegradables, en particular compuestos de polietileno de baja densidad reciclado (PEBD) y almidón termoplástico (TPS). Se analizan cuales son los beneficios de la incorporación de los materiales reciclados y biocompuestos, así como las limitaciones actuales relacionadas con el procesamiento, las propiedades mecánicas y la sostenibilidad. Esta revisión resume los estudios recientes sobre las propiedades de termosellado de películas plásticas, las técnicas de procesamiento y el impacto ambiental que tienen estos materiales.
Descargas
Información de Publicación
Perfiles de revisores N/D
Declaraciones del autor
Indexado en
- Sociedad académica
- N/D
Citas
Ajji, A., Dil, E. J., Saffar, A., & Aghkand, Z. K. (2023). Materials and Process Considerations. De Gruyter. https://doi.org/doi:10.1515/9781501524592
Bamps, B., Buntinx, M., & Peeters, R. (2023). Seal materials in flexible plastic food packaging: A review. Packaging Technology and Science, 36(7), 507–532. https://doi.org/https://doi.org/10.1002/pts.2732
Bamps, B., Guimaraes, R. M., Duijsters, G., Hermans, D., Vanminsel, J., Vervoort, E., Buntinx, M., & Peeters, R. (2022). Characterizing Mechanical, Heat Seal, and Gas Barrier Performance of Biodegradable Films to Determine Food Packaging Applications. In Polymers (Vol. 14, Issue 13). https://doi.org/10.3390/polym14132569
Barmpaki, A. A., Paul, U. C., Nardi, M., & Athanassiou, A. (2024). Eco-friendly Blends of Polylactic Acid and Polyhydroxybutyrate Enhanced with Epoxidized Soybean Oil Methyl Ester for Food-Packaging Applications. ACS Applied Polymer Materials, 6(15), 8997–9007. https://doi.org/10.1021/acsapm.4c01341
Bootklad, M., & Kaewtatip, K. (2013). Biodegradation of thermoplastic starch/eggshell powder composites. Carbohydrate Polymers, 97(2), 315–320. https://doi.org/https://doi.org/10.1016/j.carbpol.2013.05.030
Carullo, D., Casson, A., Rovera, C., Ghaani, M., Bellesia, T., Guidetti, R., & Farris, S. (2023). Testing a coated PE-based mono-material for food packaging applications: an in-depth performance comparison with conventional multi-layer configurations. Food Packaging and Shelf Life, 39. https://doi.org/10.1016/j.fpsl.2023.101143
Chi, W., Ning, Y., Liu, W., Liu, R., Li, J., & Wang, L. (2023). Development of a glue- and heat- sealable acorn kernel meal/κ-carrageenan composite film with high-haze and UV-shield for packaging grease. Industrial Crops and Products, 204. https://doi.org/10.1016/j.indcrop.2023.117250
Chuakhao, S., Rodríguez, J. T., Lapnonkawow, S., Kannan, G., Müller, A. J., & Suttiruengwong, S. (2024). Formulating PBS/PLA/PBAT blends for biodegradable, compostable packaging: The crucial roles of PBS content and reactive extrusion. Polymer Testing, 132, 108383. https://doi.org/https://doi.org/10.1016/j.polymertesting.2024.108383
Coltelli, M., Aliotta, L., Fasano, G., Miketa, F., Brkić, F., Alonso, R., Romei, M., Cinelli, P., Canesi, I., Gigante, V., & Lazzeri, A. (2023). Recyclability Studies on Poly(lactic acid)/Poly(butylene succinate‐co‐adipate) (PLA/PBSA) Biobased and Biodegradable Films. Macromolecular Materials and Engineering, 308(12). https://doi.org/10.1002/mame.202300136
Dang, K. M., & Yoksan, R. (2021). Thermoplastic starch blown films with improved mechanical and barrier properties. International Journal of Biological Macromolecules, 188, 290–299. https://doi.org/https://doi.org/10.1016/j.ijbiomac.2021.08.027
Das, M., & Chowdhury, T. (2016). Heat sealing property of starch based self-supporting edible films. Food Packaging and Shelf Life, 9, 64–68. https://doi.org/10.1016/j.fpsl.2016.05.002
de S. M. de Freitas, A., Rodrigues, J. S., Maciel, C. C., Pires, A. A. F., Lemes, A. P., Ferreira, M., & Botaro, V. R. (2021). Improvements in thermal and mechanical properties of composites based on thermoplastic starch and Kraft Lignin. International Journal of Biological Macromolecules, 184, 863–873. https://doi.org/https://doi.org/10.1016/j.ijbiomac.2021.06.153
Duigou, A. Le, Pillin, I., Bourmaud, A., Davies, P., & Baley, C. (2008). Effect of recycling on mechanical behaviour of biocompostable flax/poly(l-lactide) composites. Composites Part A: Applied Science and Manufacturing, 39(9), 1471–1478. https://doi.org/https://doi.org/10.1016/j.compositesa.2008.05.008
Farley, J. M., & Meka, P. (1994). Heat sealing of semicrystalline polymer films. III. Effect of corona discharge treatment of LLDPE. Journal of Applied Polymer Science, 51(1), 121–131. https://doi.org/https://doi.org/10.1002/app.1994.070510113
Gamboni, J. E., Bonfiglio, G. V., Slavutsky, A. M., & Bertuzzi, M. A. (2023). Evaluation of edible films as single-serve pouches for a sustainable packaging system. Food Chemistry Advances, 3. https://doi.org/10.1016/j.focha.2023.100547
Garalde, R. A., Thipmanee, R., Jariyasakoolroj, P., & Sane, A. (2019). The effects of blend ratio and storage time on thermoplastic starch/poly(butylene adipate-co-terephthalate) films. Heliyon, 5(3), e01251. https://doi.org/https://doi.org/10.1016/j.heliyon.2019.e01251
George, J., Navaf, M., Raju, A. P., Kumar, R., & Sunooj, K. V. (2023). Mechanical Properties of Natural Material-Based Packaging Films: Current Scenario. https://doi.org/https://doi.org/10.1002/9783527837304.ch13
Govindan, S., Ramos, M., & Al-Jumaily, A. M. (2023). A Review of Biodegradable Polymer Blends and Polymer Composite for Flexible Food Packaging Application. Materials Science Forum, 1094, 51–60. https://doi.org/10.4028/p-dc7wkh
Hashimoto, Y., Hashimoto, Y., Tsujii, T., Morimoto, M., Kotaki, M., & Hamada, H. (2009). Effect of Heat Sealing Temperature on Mechanical Properties and Molecular Structure at Heat-Sealed Parts of Polylactic Acid Film —Part II. Seikei-Kakou, 19, 236–242. https://doi.org/10.4325/seikeikakou.19.236
Hashimoto, Y., Hashimoto, Y., Yamada, K., & Miyata, K. (2012). Effect of LLDPE contents on heat seal properties for HDPE/LLDPE blend film. Seikei-Kakou, 23(11), 691–697. https://doi.org/10.4325/seikeikakou.23.691
İlaslan, K. (2024). Use of modified polycaprolactone polymer in food packaging applications: a review. Gıda ve Yem Bilimi Teknolojisi Dergisi, 0(32), 13–26. https://doi.org/10.56833/gidaveyem.1485689
Jacob, J., Linson, N., Mavelil-Sam, R., Maria, H. J., Pothan, L. A., Thomas, S., Kabdrakhmanova, S., & Laroze, D. (2024). Poly(lactic acid)/nanocellulose biocomposites for sustainable food packaging. Cellulose, 31(10), 5997–6042. https://doi.org/10.1007/s10570-024-05975-w
Jasso-Gastinel, C. F., Soltero-Martínez, J. F. A., & Mendizábal, E. (2017). 1 - Introduction: Modifiable Characteristics and Applications (C. F. Jasso-Gastinel & J. M. B. T.-M. of P. P. Kenny (eds.); pp. 1–21). William Andrew Publishing. https://doi.org/https://doi.org/10.1016/B978-0-323-44353-1.00001-4
Kamrit, P., Seadan, M., & Suttiruengwong, S. (2022). Barrier and Seal Properties of Reactive Blending of Poly(butylene succinate) Based Blends. Suan Sunandha Science and Technology Journal, 9(2 SE-Research Articles), 22–30. https://doi.org/10.53848/ssstj.v9i2.231
Karim, S. F. A., Jai, J., Hamid, K. H. K., & Norhisam, F. N. (2021). Thermal and mechanical properties of polyethylene-starch based film incorporated with crude palm oil. IOP Conference Series: Materials Science and Engineering, 1092(1), 12033. https://doi.org/10.1088/1757-899x/1092/1/012033
Li, G., Sarazin, P., Orts, W. J., Imam, S. H., & Favis, B. D. (2011). Biodegradation of Thermoplastic Starch and its Blends with Poly(lactic acid) and Polyethylene: Influence of Morphology. Macromolecular Chemistry and Physics, 212(11), 1147–1154. https://doi.org/https://doi.org/10.1002/macp.201100090
Lim, W. S., Ock, S. Y., Park, G. D., Lee, I. W., Lee, M. H., & Park, H. J. (2020). Heat-sealing property of cassava starch film plasticized with glycerol and sorbitol. Food Packaging and Shelf Life, 26. https://doi.org/10.1016/j.fpsl.2020.100556
Lu, J., Li, T., Ma, L., Li, S., Jiang, W., Qin, W., Li, S., Li, Q., Zhang, Z., & Wu, H. (2021). Optimization of heat-sealing properties for antimicrobial soybean protein isolate film incorporating diatomite/thymol complex and its application on blueberry packaging. Food Packaging and Shelf Life, 29. https://doi.org/10.1016/j.fpsl.2021.100690
Matthews, J., Hicks, B., Mullineux, G., Leslie, J., Burke, A., Goodwin, J., Ogg, A., & Campbell, A. (2013). An Empirical Investigation into the Influence of Sealing Crimp Geometry and Process Settings on the Seal Integrity of Traditional and Biopolymer Packaging Materials. Packaging Technology and Science, 26(6), 355–371. https://doi.org/https://doi.org/10.1002/pts.1991
Mazidi, M. M., Arezoumand, S., & Zare, L. (2024). Research progress in fully biorenewable tough blends of polylactide and green plasticizers. International Journal of Biological Macromolecules, 279(Pt 3), 135345. https://doi.org/10.1016/j.ijbiomac.2024.135345
McCurdy, C., Dixion, D., Archer, E., Dooher, T., & Edwards, I. (2022). A Comparison of the Sealing, Forming and Moisture Vapour Transmission Properties of Polylactic Acid (PLA), Polyethene (PE) and Polyethylene Terephthalate (PET) Coated Boards for Packaging Applications. Journal of Packaging Technology and Research, 6(2), 91–100. https://doi.org/10.1007/s41783-022-00131-w
Mohammadi Nafchi, A., Moradpour, M., Saeidi, M., & Alias, A. K. (2013). Thermoplastic starches: Properties, challenges, and prospects. Starch - Stärke, 65(1–2), 61–72. https://doi.org/https://doi.org/10.1002/star.201200201
Morris, B. A. (2022a). Designing flexible packaging for sustainability. In The Science and Technology of Flexible Packaging (pp. 709–761). Elsevier. https://doi.org/10.1016/b978-0-323-85435-1.00018-1
Morris, B. A. (2022b). Flexible packaging equipment. In The Science and Technology of Flexible Packaging (pp. 65–81). Elsevier. https://doi.org/10.1016/b978-0-323-85435-1.00016-8
Mtibe, A., & John, M. J. (2023). Sustainable Materials from Starch-Based Plastics. In S. S. and S. R. J. Parameswaranpillai, A. Jayakumar, E.K. Radhakrishnan (Ed.), Natural Materials for Food Packaging Application. https://doi.org/https://doi.org/10.1002/9783527837304.ch9
Naciones Unidas. (2018). La Agenda 2030 y los Objetivos de Desarrollo Sostenible: una oportunidad para América Latina y el Caribe. https://doi.org/(LC/G.2681-P/Rev.3)
Oromiehie, A. R., lari, T. T., & Rabiee, A. (2013). Physical and thermal mechanical properties of corn starch/LDPE composites. Journal of Applied Polymer Science, 127(2), 1128–1134. https://doi.org/https://doi.org/10.1002/app.37877
Palai, B., Biswal, M., Mohanty, S., & Nayak, S. K. (2019). In situ reactive compatibilization of polylactic acid (PLA) and thermoplastic starch (TPS) blends; synthesis and evaluation of extrusion blown films thereof. Industrial Crops and Products, 141. https://doi.org/10.1016/j.indcrop.2019.111748
Parameswaranpillai, J., Jayakumar, A., Radhakrishnan, E. K., Siengchin, S., Radoor, S., & Giannakas, A. E. (2023). Plant Extracts-Based Food Packaging Films. In S. S. and S. R. J. Parameswaranpillai, A. Jayakumar, E.K. Radhakrishnan (Ed.), Natural Materials for Food Packaging Application. https://doi.org/https://doi.org/10.1002/9783527837304.ch2
Parameswaranpillai, J., Jayakumar, A., Radhakrishnan, E. K., Siengchin, S., Radoor, S., Ramesh, M., Rajeshkumar, L., Bhuvaneswari, V., & Balaji, D. (2023). Introduction to Natural Materials for Food Packaging. In S. S. and S. R. eds J. Parameswaranpillai, A. Jayakumar, E.K. Radhakrishnan (Ed.), Natural Materials for Food Packaging Application. https://doi.org/https://doi.org/10.1002/9783527837304.ch1
Ren, Z., Ning, Y., Xu, J., Cheng, X., & Wang, L. (2024). Eco-friendly fabricating Tara pod extract-soy protein isolate film with antioxidant and heat-sealing properties for packaging beef tallow. Food Hydrocolloids, 153. https://doi.org/10.1016/j.foodhyd.2024.110041
Rodriguez-Gonzalez, F. J., Ramsay, B. A., & Favis, B. D. (2003). High performance LDPE/thermoplastic starch blends: a sustainable alternative to pure polyethylene. Polymer, 44(5), 1517–1526. https://doi.org/https://doi.org/10.1016/S0032-3861(02)00907-2
Saedi, S., Kim, J. T., Lee, E. H., Kumar, A., & Shin, G. H. (2023). Fully transparent and flexible antibacterial packaging films based on regenerated cellulose extracted from ginger pulp. Industrial Crops and Products, 197, 116554.
Suh, J. H., Ock, S. Y., Park, G. D., Lee, M. H., & Park, H. J. (2020). Effect of moisture content on the heat-sealing property of starch films from different botanical sources. Polymer Testing, 89, 106612. https://doi.org/https://doi.org/10.1016/j.polymertesting.2020.106612
Surendren, A., Mohanty, A. K., Liu, Q., & Misra, M. (2022). A review of biodegradable thermoplastic starches, their blends and composites: recent developments and opportunities for single-use plastic packaging alternatives. Green Chemistry, 24(22), 8606–8636. https://doi.org/10.1039/D2GC02169B
Tabasi, R. Y., Najarzadeh, Z., & Ajji, A. (2015). Development of high performance sealable films based on biodegradable/compostable blends. Industrial Crops and Products, 72, 206–213. https://doi.org/https://doi.org/10.1016/j.indcrop.2014.11.021
Tamber, H., & Planeta, M. (2020). 5.1 Blown-Film Processing. In J. F. Macnamara (Ed.), Film Extrusion Manual (Third Edit).
Tolinski, M., C. C. P. (2021). 4.2 Sustainable Plastics Packaging. In Plastics and Sustainability, Grey is the New Green - Exploring the Nuances and Complexities of Modern Plastics (2nd Edition). John Wiley & Sons. https://app.knovel.com/hotlink/khtml/id:kt012XN7F2/plastics-sustainability/sustainable-plastics
Vasilyev, I. Y., Ananyev, V. V, & Chernov, M. (2022). Biodegradable packaging materials based on low density polyethylene, starch and monoglycerides. Tonkie Khimicheskie Tekhnologii, 17(3), 231–241. https://doi.org/10.32362/2410-6593-2022-17-3-231-241
Yoksan, R., Dang, K. M., Boontanimitr, A., & Chirachanchai, S. (2021). Relationship between microstructure and performances of simultaneous biaxially stretched films based on thermoplastic starch and biodegradable polyesters. International Journal of Biological Macromolecules, 190, 141–150. https://doi.org/10.1016/j.ijbiomac.2021.08.206
Zhang M, Liu S, Gao X, Jiang X, Zhang E, Fan H, Zhu S. (2024) Highly flexible carbon nitride-polyethylene glycol-cellulose acetate film with
photocatalytic antibacterial activity for fruit preservation. Int J Biol Macromol. 266(Pt 1):131161. https://doi.org/10.1016/j.ijbiomac.2024.131161
Zhu, Z., Meng, L., Gao, Z., Liu, R., Guo, X., Wang, H., & Kong, B. (2024). Development of chitosan/polycaprolactone-thymol Janus films with directional transport and antibacterial properties for meat preservation. International Journal of Biological Macromolecules, 268(Pt 2), 131669. https://doi.org/10.1016/j.ijbiomac.2024.131669
Zhuang, C., Tao, F. and Cui, Y. (2017), Eco-friendly biorefractory films of gelatin and TEMPO-oxidized cellulose ester for food packaging
application. J. Sci. Food Agric, 97: 3384-3395. https://doi.org/10.1002/jsfa.8189
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2025 Marco Antonio Cortina Gutierrez, Adriana López León, Mariamne Dehonor Gómez, Georgina Montes de Oca Ramírez, Luis Edmundo Lugo Uribe

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.