Estudio de ciclación azida-alquino (CuACC) entre L-aminoácidos y el indol
Palabras clave:
Ciclación, aminoácido, indol, ecológicoResumen
En esta investigación se estudió la reacción de ciclación azida-alquino entre L-aminoácidos y el indol. Se usó como reacción modelo el triptófano propargilado y el 5–azido indol. Las condiciones de reacción óptimas fueron a 60 ºC en una mezcla de terbutanol/metanol/agua (3:1:1) empleando sulfato cúprico pentahidrato. La reacción se exploró con dos aminoácidos más (fenilalanina y tirosina) mostrando rendimientos del 86-92 %. Se logró establecer una ruta de funcionalización de aminoácidos con indol ecológica, logrando así unir estos dos versátiles bloques moleculares.
Descargas
Información de Publicación
Perfiles de revisores N/D
Declaraciones del autor
Indexado en
- Sociedad académica
- N/D
Citas
Huisgen, R. (1963). 1,3-dipolar cycloadditions: Past and future. Angewandte Chemie, 2, 565–598. https://doi.org/10.1002/anie.196305651
Tornøe, C. W., Christensen, C., & Meldal, M. (2002). Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(I)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. The Journal of Organic Chemistry, 67(9), 3057–3064. https://doi.org/10.1021/jo011148j
Rostovtsev, V. V., Green, L. G., Fokin, V. V., & Sharpless, K. B. (2002). A stepwise Huisgen cycloaddition process: Copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angewandte Chemie International Edition, 41, 2596–2599. https://doi.org/10.1002/1521-3773(20020715)41:14
<2596::AID-ANIE2596>3.0.CO;2-4
Caricato, M., Olmo, A., Gargiulli, C., Gattuso, G., & Pasini, D. (2012). A ‘clicked’ macrocyclic probe incorporating Binol as the signalling unit for the chiroptical sensing of anions. Tetrahedron, 68(38), 7861–7866. https://doi.org/10.1016/j.tet.2012.07.038
Sumerlin, B. S., & Vogt, A. P. (2009). Macromolecular engineering through click chemistry and other efficient transformations. Macromolecules, 43(1), 1–13. https://doi.org/10.1021/ma901447e
Rendón-Nava, D., Álvarez-Hernández, A., Rheingold, A. L., Suárez-Castillo, O. R., & Mendoza-Espinosa, D. (2019). Hydroxyl-functionalized triazolylidene-based PEPPSI complexes: Metallacycle formation effect on the Suzuki coupling reaction. Dalton Transactions, 48(10), 3214–3222. https://doi.org/10.1039/c8dt04432e
Garg, P., Sangam, S., Kochhar, D., Pahari, S., Kar, C., & Mukherjee, M. (2020). Exploring the role of triazole functionalized heteroatom co-doped carbon quantum dots against human coronaviruses. Nano Today, 35. https://doi.org/10.1016/j.nantod.2020.101001
Premio Nobel de Química para los padres de la “química click”. (2022, octubre 5). ABC. Consultado el 20 de octubre de 2024.
Kolb, H. C., Finn, M. G., & Sharpless, K. B. (2001). Click chemistry: Diverse chemical function from a few good reactions. Angewandte Chemie International Edition, 40(11), 2004–2021. https://doi.org/10.1002/1521-3773(20010601)40:11
<2004::AID-ANIE2004>3.0.CO;2-5
Heshmati, P., Whitehurst, J., & Marshall, G. R. (2001). Solid-phase synthesis utilizing azido-α-amino acids: Reduction of azido-protected proline. En Peptides: The Wave of the Future (pp. 240–241). Springer. https://link.springer.com/chapter/10.1007/978-94-010-0464-0_108
Correa, A. (2021). Metal-catalyzed C(sp²)–H functionalization processes of phenylalanine- and tyrosine-containing peptides. European Journal of Inorganic Chemistry, 2021(29), 2928–2941. https://doi.org/10.1002/ejic.202100374
Cheng, Z., Kuru, E., Sachdeva, A., et al. (2020). Fluorescent amino acids as versatile building blocks for chemical biology. Nature Reviews Chemistry, 4, 275–290. https://doi.org/10.1038/s41570-020-0186-z
Angel-Jijón, C., Rendón-Nava, D., Fonseca-Olvera, J. G., Mendoza-Espinosa, D., & Alvarez-Hernández, A. (2023). Synthesis and catalytic applications of metal complexes supported by indole-functionalized mesoionic 1,2,3-triazolylidenes. Applied Organometallic Chemistry, 37(5). https://doi.org/10.1002/aoc.7069
Li, Q., Kim, Y., Namm, J., Kulkarni, A., Rosania, G. R., Ahn, Y., & Chang, Y. (2006). RNA-selective, live cell imaging probes for studying nuclear structure and function. Chemistry & Biology, 13(6), 615–623. https://doi.org/10.1016/j.chembiol.2006.04.007
Armitage, B. A. (2005). Cyanine dye–DNA interactions: Intercalation, groove binding, and aggregation. En Topics in Current Chemistry (pp. 55–76). https://doi.org/10.1007/b100442
Lei, H., Stoakes, M. S., Schwabacher, A. W., Herath, K. P. B., & Lee, J. (1994). Efficient synthesis of a phosphinate bis-amino acid and its use in the construction of amphiphilic peptides. The Journal of Organic Chemistry, 59(15), 4206–4210. https://doi.org/10.1021/jo00094a036
Bew, S. P., & Hiatt-Gipson, G. D. (2010). Synthesis of C-propargylic esters of N-protected amino acids and peptides. The Journal of Organic Chemistry, 75(11), 3897–3899. https://doi.org/10.1021/jo100537q
Liu, Y., Xiao, Q., Liu, Y., Li, Z., Qiu, Y., Zhou, G., Yao, Z., & Jiang, S. (2014). Biological evaluation of new mimetics of annonaceous acetogenins: Alteration of right scaffold by click linkage with aromatic functionalities. European Journal of Medicinal Chemistry, 78, 248–258. https://doi.org/10.1016/j.ejmech.2014.03.062
Johansson, H., & Pedersen, D. S. (2012). Azide- and alkyne-derivatised α-amino acids. European Journal of Organic Chemistry, 2012(23), 4267–4281. https://doi.org/10.1002/ejoc.201200496
Berdzik, N., Koenig, H., Mrówczyńska, L., Nowak, D., Jasiewicz, B., & Pospieszny, T. (2023). Synthesis and hemolytic activity of bile acid–indole bioconjugates linked by triazole. The Journal of Organic Chemistry, 88(24), 16719–16734. https://doi.org/10.1021/acs.joc.3c00815
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2025 Carlos Angel Jijón, Yadira González Viveros, Rosa Ángeles Vázquez García, María de los Ángeles Gama Gálvez, Wendy Yesenia Mejía Rivera, Zianya Gómez Soto

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.










