Estudio computacional del proceso de adsorción del ion fosfato en las superficies de CaO y γ-Al2O3

Autores/as

Palabras clave:

calcio, alúmina, fosfato, adsorción, catálisis

Resumen

En el presente trabajo se analizó la adsorción del ion fosfato sobre superficies de óxido de calcio (CaO) y óxido de aluminio en su fase gamma (γ-Al2O3), modeladas como cúmulos de tamaño finito y utilizando el nivel de teoría semiempírico PM6. Se calcularon las energías de adsorción, y se obtuvieron valores de ΔHads = -476.159 kJ/mol para la interacción entre el fosfato y la superficie de CaO, y de -2357.1 kJ/mol para la interacción con la γ-Al2O3. Los resultados indican que la interacción entre el ion fosfato y la superficie de CaO corresponde a un proceso de fisisorción, caracterizado por una energía de adsorción relativamente baja e interacciones débiles, predominantemente de tipo electrostático y de Van der Waals. En contraste, la fuerte interacción observada en el sistema fosfato–γ- Al2O3, junto con el alto valor estimado para la energía de adsorción, sugieren un proceso de quimisorción, en el cual se forman enlaces químicos entre el adsorbato y la superficie.

Descargas

Los datos de descargas todavía no están disponibles.

Información de Publicación

Metric
Este artículo
Otros artículos
Revisores por pares 
2.4 promedio

Perfiles de revisores  N/D

Declaraciones del autor

Declaraciones del autor
Este artículo
Otros artículos
Disponibilidad de datos 
N/A
16%
Financiamiento externo 
No
32% con financiadores
Intereses conflictivos 
N/D
11%
Metric
Para esta revista
Otras revistas
Artículos aceptados 
87%
33%
Días hasta la publicación 
172
145

Indexado en

Editor y comité editorial
perfiles
Sociedad académica 
N/D

Citas

Allouche, A. R. (2017). Gabedit. Consultado el 15 de marzo de 2024. https://gabedit.sourceforge.net/

Alzahrani, K. A., Deeth, R. J. (2016). Molecular modeling of zinc paddlewheel molecular complexes and the pores of a flexible metal organic framework. Journal of Molecular Modeling, 22, 1-13. https://doi.org/10.1007/s00894-016-2949-5.

Brownlie, W. J., Sutton, M. A., Heal, K. V., Reay, D. S., Spears, B. (2022). Our phosphorus future: towards global phosphorus sustainability. UK Centre for Ecology & Hydrology, Edinburgh.

Cordell, D., Drangert, J. O., White, S. (2009). The story of phosphorus: Global food security and food for thought. Global Environmental Change, 19(2), 292–305. https://doi.org/10.1016/j.gloenvcha.2008.10.009.

Day N. (2024). Crystallography Open Database: Open-access collection of crystal structures of organic, inorganic, metal-organic compounds and minerals, excluding biopolymers. Consultado el 15 de marzo de 2024. https://www.crystollography.net/cod/index.php.

Ferrell, J. A., Vencill, W. K., Xia, K., Grey, T. L. (2005). Sorption and desorption of flumioxazin to soil, clay minerals and ion‐exchange resin. Pest Management Science, 61(1), 40-46. https://doi.org/10.1002/ps.956.

Ghosh, S., Lobanov, S., Lo, V. K. (2019). An overview of technologies to recover phosphorus as struvite from wastewater: advantages and shortcomings. Environmental Science and Pollution Research, 26(19), 19063–19077. https://doi.org/10.1007/s11356-019-05378-6

Hanwell M. D., Curtis D. E., Lonie D. C., Vandermeersch T., Zurek E., Hutchinson G. R. (2012). Avogadro: an advance semantic chemical editor, visualization, and análisis platform. Journal of Cheminformatics, 4(17). https://doi.org/10.1186/1758-2946-4-17.

Huang, X., Foster, G. D., Honeychuck, R. V., & Schreifels, J. A. (2009). The Maximum of Phosphate Adsorption at pH 4.0: Why it appears on aluminum oxides but not on iron oxides. Langmuir, 25(8), 4450–4461. https://doi.org/10.1021/la803302m

Huhn, A., Wisser, D., Corral Valero, M., Roy, T., Rivallan, M., Catita, L., Lessage, A., Michel, C., Raybaud, P. (2021). Structural characterization of phosphate species adsorbed on γ-alumina by combining DNP surface enhanced NMR spectroscopy and DFT calculations. ACS Catalysis, 11(17), 11278-11292.

https://doi.org/10.1021/acscatal.1c02135

Jupp, A. R., Beijer, S., Narain, G. C., Schipper, W., Slootweg, J. C. (2021). Phosphorus recovery and recycling – closing the loop. Chemical Society Reviews, 50(1), 87–101. https://doi.org/10.1039/D0CS01150A.

Krasnov, P. O., Shkaberina, G. S., Polyutov, S. P. (2022). Molecular hydrogen sorption capacity of P216-schwarzite: PM6-D3, MP2 and QTAIM approaches. Computational Materials Science, 209, 111410. https://doi.org/10.1016/j.commatsci.2022.111410

Lan, S., Guo, N., Liu, L., Wu, X., Li, L., Gan, S. (2013). Facile preparation of hierarchical hollow structure gamma alumina and a study of its adsorption capacity. Applied Surface Science, 283, 1032–1040. https://doi.org/10.1016/j.apsusc.2013.07.064.

Li, J., Cao, L., Li, B., Huang, H., Yu, W., Sun, C., Long, K., Young, B. (2023). Utilization of activated sludge and shell wastes for the preparation of Ca-loaded biochar for phosphate removal and recovery. Journal of Cleaner Production, 382, 135395. https://doi.org/10.1016/j.jclepro.2022.135395.

Li, X., Zhao, R., Sun, B., Lu, X., Zhang, C., Wang, Z., Wang, C. (2014). Fabrication of α-Fe2O3–γ-Al2O3 core–shell nanofibers and their Cr (VI) adsorptive properties. RSC Advances, 4(80), 42376–42382. https://doi.org/10.1039/C4RA03692A.

Li, Y., Liu, C., Luan, Z., Peng, X., Zhu, C., Chen, Z., Zhang, Z., Fan, J., Jia, Z. (2006). Phosphate removal from aqueous solutions using raw and activated red mud and fly ash. Journal of Hazardous Materials, 137(1), 374-383. https://doi.org/10.1016/j.jhazmat.2006.02.011

Liu X, Shen F, Qi X. (2019). Adsorption recovery of phosphate from aqueous solution by CaO-biochar composites prepared from eggshell and rice straw. Science of the Total Environment, 666, 694-702. https://doi.org/10.1016/j.scitotenv.2019.02.227

Lu, T., Chen, F. (2012). Multiwfn: A Multifunctional Wavefunction Analyzer. Journal of Computational Chemistry, 33, 580-592. https://doi.org/10.1002/jcc.22885.

Oladoja, N. A., Aboluwoye, C. O., Ololade, I. A., Adebayo, O. L., Olaseni, S. E., Adelagun, R. O. A. (2012). Intercalation of gastropod shell derived calcium oxide in clay and application in phosphate removal from aqua medium. Industrial & Engineering Chemistry Research, 51(45), 14637-14645. https://doi.org/10.1021/ie301520v.

Park, J. H., Choi, A. Y., Lee, S. L., Lee, J. H., Rho, J. S., Kim, S. H., Seo, D. C. (2022). Removal of phosphates using eggshells and calcined eggshells in high phosphate solutions. Applied Biological Chemistry, 65, 75. https://doi.org/10.1186/s13765-022-00744-4.

Roy, T., Wisser, D., Rivallan, M., Corral-Valero, M., Corre, T., Delpoux, O., Pirngruber, G. D., Lefèvre, G. (2021). Phosphate adsorption on γ-alumina: a surface complex model based on surface characterization and zeta potential measurements. The Journal of Physical Chemistry C, 125(20), 10909-10918. https://doi.org/10.1021/acs.jpcc.0c11553.

Santos, A. F., Arim, A. L., Lopes, D. V., Gando-Ferreira, L. M., Quina, M. J. (2019). Recovery of phosphate from aqueous solutions using calcined eggshell as an eco-friendly adsorbent. Journal of Environmental Management, 238, 451–459.

https://doi.org/10.1016/j.jenvman.2019.03.015

Sims, R. A., Harmer, S. L., Quinton, J. S. (2019). The Role of Physisorption and Chemisorption in the Oscillatory Adsorption of Organosilanes on Aluminium Oxide. Polymers, 11(3), 410. https://doi.org/10.3390/polym11030410

Tan, S. Y., Leong, K. H., Ahmad, T. (2021). Total phosphorus and reactive phosphate removal from aquaculture wastewater using calcined eggshell. IOP Conference Series: Earth and Environmental Science, 945, 1, 012019. https://doi.org/10.1088/1755-1315/945/1/012019.

Yuan, Z., Jiang, S., Sheng, H., Liu, X., Hua, H., Liu, X., Zhang, Y. (2018). Human perturbation of the global phosphorus cycle: changes and consequences. Environmental Science & Technology, 52(5), 2438-2450. https://doi.org/10.1021/acs.est.7b03910.

Wignall, G. D., Rothon, R. N., Longman, G. W., Woodward, G. R. (1977). The structure of amorphous aluminium phosphate by radial distribution functions derived from X-ray diffraction. Journal of Materials Science, 12, 1039–1049. https://doi.org/10.1007/BF00540989

Wu, G., Liu, G., Li, X., Peng, Z., Zhou, Q., Qi, T. (2022). Enhanced phosphate removal with fine activated alumina synthesized from a sodium aluminate solution: Performance and mechanism. RSC Advances, 12(8), 4562-4571. https://doi.org/10.1039/D1RA08474G

Wu, H., Liu, X., Cao, X., Guo, Q., Yu, G. (2024). Effects of phosphorus on the fusion characteristics of synthetic ashes with different Al2O3/CaO ratios. Fuel, 361, 130698. https://doi.org/10.1016/j.fuel.2023.130698.

Xie, J., Lin, Y., Li, C., Wu, D., Kong, H. (2015). Removal and recovery of phosphate from water by activated aluminum oxide and lanthanum oxide. Powder Technology, 269, 351–357.

https://doi.org/10.1016/j.powtec.2014.09.024.

Zheng, T. T., Sun, Z. X., Yang, X. F., Holmgren, A. (2012). Sorption of phosphate onto mesoporous γ-alumina studied with in-situ ATR-FTIR spectroscopy. Chemistry Central Journal, 6, 26. https://doi.org/10.1186/1752-153X-6-26.

Descargas

Publicado

2025-10-16

Cómo citar

Camacho-Valencia, F., Mendoza-Huizar, L. H., Tavizón Pozos, J. A., & Vázquez-Rodríguez, G. A. (2025). Estudio computacional del proceso de adsorción del ion fosfato en las superficies de CaO y γ-Al2O3. Pädi Boletín Científico De Ciencias Básicas E Ingenierías Del ICBI, 13(26). Recuperado a partir de https://repository.uaeh.edu.mx/revistas/index.php/icbi/article/view/14987

Número

Sección

Artículos de investigación