Los polihidroxialcanoatos como una alternativa para reducir el impacto ambiental ocasionado por los plásticos convencionales
Palabras clave:
Biopolímeros, microplásticos, plásticos convencionales, biodegradableResumen
Los plásticos convencionales han generado graves problemas ambientales. Más de 380 millones de toneladas anuales de residuos plásticos terminan vertidos en los ecosistemas terrestres y marinos. Además, terminan inmersos en la cadena alimentaria humana. Los bioplásticos, como los polihidroxialcanoatos, surgen como una alternativa sostenible, debido a sus características son adecuados para ser utilizados en industrias tales como la alimentaria, biomédica y agroindustrial en general. Representan una alternativa para reducir la dependencia a los plásticos convencionales, sin embargo, actualmente, la industria de los bioplásticos enfrenta retos como altos costos de producción y falta de conciencia pública. El uso de materias primas de bajo costo, como los coproductos agroindustriales, la creación de políticas de apoyo y programas orientados a la investigación, desarrollo y difusión de estos biopolímeros podría favorecer su disponibilidad, fomentar su uso en lugar de los plásticos convencionales y al mismo tiempo reducir los costos de producción.
Descargas
Información de Publicación
Perfiles de revisores N/D
Declaraciones del autor
Indexado en
- Sociedad académica
- N/D
Citas
Amabile, C., Abate, T., Muñoz, R., Chianese, S., & Musmarra, D. (2024). Production of poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) from methane and volatile fatty acids: Properties, metabolic routes and current trend. The Science of the Total Environment, 927, 172138. https://doi.org/10.1016/j.scitotenv.2024.172138
Andhalkar, V. V., Foong, S. Y., Kee, S. H., Lam, S. S., Chan, Y. H., Djellabi, R., Bhubalan, K., Medina, F., & Constantí, M. (2023). Integrated biorefinery design with techno‐economic and life cycle assessment tools in polyhydroxyalkanoates processing. Macromolecular Materials and Engineering, 308(11). https://doi.org/10.1002/mame.202300100
Bai, Z., Wang, N., & Wang, M. (2021). Effects of microplastics on marine copepods. Ecotoxicology and Environmental Safety, 217, 112243. https://doi.org/10.1016/j.ecoenv.2021.112243
Chemello, G., Trotta, E., Notarstefano, V., Papetti, L., Di Renzo, L., Matiddi, M., Silvestri, C., Carnevali, O., & Gioacchini, G. (2023). Microplastics evidence in yolk and liver of loggerhead sea turtles (Caretta caretta), a pilot study. Environmental Pollution, 337, 122589. https://doi.org/10.1016/j.envpol.2023.122589
De Paula, C. B. C., De Paula-Elias, F. C., Rodrigues, M. N., Coelho, L. F., De Oliveira, N. M. L., De Almeida, A. F., & Contiero, J. (2021). Polyhydroxyalkanoate synthesis by Burkholderia glumae into a sustainable sugarcane biorefinery concept. Frontiers in Bioengineering and Biotechnology, 8. https://doi.org/10.3389/fbioe.2020.631284
Dindar, E. (2025). Impact of microplastic contamination on phosphorus availability, alkaline phosphatase activity, and polymer degradation in soil. Polymers, 17(12), 1586. https://doi.org/10.3390/polym17121586
Di Giacinto, F., Di Renzo, L., Mascilongo, G., Notarstefano, V., Gioacchini, G., Giorgini, E., Bogdanović, T., Petričević, S., Listeš, E., Brkljača, M., Conti, F., Proficco, C., Zambuchini, B., Di Francesco, G., Giansante, C., Diletti, G., Ferri, N., & Berti, M. (2023). Detection of microplastics, polymers and additives in edible muscle of swordfish (Xiphias gladius) and bluefin tuna (Thunnus thynnus) caught in the Mediterranean Sea. Journal of Sea Research, 192, 102359. https://doi.org/10.1016/j.seares.2023.102359
FAO. (2024). FAO major fishing areas. Fisheries and Aquaculture. Retrieved February 18, 2025, from https://www.fao.org/fishery/en/area/search
GO!PHA. (2022). About GO!PHA. Retrieved March 6, 2025, from https://www.gopha.org/who-we-are
Hierro-Iglesias, C., Chimphango, A., Thornley, P., & Fernández-Castané, A. (2022). Opportunities for the development of cassava waste biorefineries for the production of polyhydroxyalkanoates in Sub-Saharan Africa. Biomass and Bioenergy, 166, 106600. https://doi.org/10.1016/j.biombioe.2022.106600
Ita-Nagy, D., Vázquez-Rowe, I., & Kahhat, R. (2022). Developing a methodology to quantify mismanaged plastic waste entering the ocean in coastal countries. Journal of Industrial Ecology, 26(6), 2108–2122. https://doi.org/10.1111/jiec.13349
Kalia, V. C., Patel, S. K. S., & Lee, J. (2023). Exploiting polyhydroxyalkanoates for biomedical applications. Polymers, 15(8), 1937. https://doi.org/10.3390/polym15081937
Kaniuk, Ł., & Stachewicz, U. (2021). Development and advantages of biodegradable PHA polymers based on electrospun PHBV fibers for tissue engineering and other biomedical applications. ACS Biomaterials Science & Engineering, 7(12), 5339–5362. https://doi.org/10.1021/acsbiomaterials.1c00757
Khairul, S. M., Mahyudin, N. A., Abas, F., Jamaludin, N., & Rashid, N. K. M. A. (2022). The proximate composition and metabolite profiling of sugarcane (Saccharum officinarum) molasses. Malaysian Applied Biology, 51(2), 63–68. https://doi.org/10.55230/mabjournal.v51i2.2259
Koller, M., & Mukherjee, A. (2022). A new wave of industrialization of PHA biopolyesters. Bioengineering, 9(2), 74. https://doi.org/10.3390/bioengineering9020074
Koller, M., & Rittmann, S. K. (2022). Haloarchaea as emerging big players in future polyhydroxyalkanoate bioproduction: Review of trends and perspectives. Current Research in Biotechnology, 4, 377–391. https://doi.org/10.1016/j.crbiot.2022.09.002
Ladhari, S., Vu, N., Boisvert, C., Saidi, A., & Nguyen-Tri, P. (2023). Recent development of polyhydroxyalkanoates (PHA)-based materials for antibacterial applications: A review. ACS Applied Bio Materials, 6(4), 1398–1430. https://doi.org/10.1021/acsabm.3c00078
MacLeod, M., Arp, H. P. H., Tekman, M. B., & Jahnke, A. (2021). The global threat from plastic pollution. Science, 373(6550), 61–65. https://doi.org/10.1126/science.abg5433
Makhdoumi, P., Hossini, H., & Pirsaheb, M. (2021). A review of microplastic pollution in commercial fish for human consumption. Reviews on Environmental Health, 38(1), 97–109. https://doi.org/10.1515/reveh-2021-0103
Millican, J. M., & Agarwal, S. (2021). Plastic pollution: A material problem? Macromolecules, 54(10), 4455–4469. https://doi.org/10.1021/acs.macromol.0c02814
Nghiem, L. D., Iqbal, H. M., & Zdarta, J. (2021). The shadow pandemic of single-use personal protective equipment plastic waste: A blueprint for suppression and eradication. Case Studies in Chemical and Environmental Engineering, 4, 100125. https://doi.org/10.1016/j.cscee.2021.100125
Naser, A. Z., Deiab, I., & Darras, B. M. (2021). Poly(lactic acid) (PLA) and polyhydroxyalkanoates (PHAs), green alternatives to petroleum-based plastics: A review. RSC Advances, 11(28), 17151–17196. https://doi.org/10.1039/d1ra02390j
NOAA. (2022). Marine microplastic concentrations. National Centers for Environmental Information. Retrieved February 14, 2025, from https://experience.arcgis.com/experience/b296879cc1984fda833a8acc93e31476/page/Page/?views=DataInformation%2CSample#data_s=id%3AdataSource_1-18cf9a85fdd-layer-4%3A3857
Paloyan, A., Tadevosyan, M., Ghevondyan, D., Khoyetsyan, L., Karapetyan, M., Margaryan, A., Antranikian, G., & Panosyan, H. (2025). Biodegradation of polyhydroxyalkanoates: Current state and future prospects. Frontiers in Microbiology, 16, 1542468. https://doi.org/10.3389/fmicb.2025.1542468
Park, H., He, H., Yan, X., Liu, X., Scrutton, N. S., & Chen, G. (2024). PHA is not just a bioplastic! Biotechnology Advances, 71, 108320. https://doi.org/10.1016/j.biotechadv.2024.108320
Pilapitiya, P. N. T., & Ratnayake, A. S. (2024). The world of plastic waste: A review. Cleaner Materials, 11, 100220. https://doi.org/10.1016/j.clema.2024.100220
Samrot, A. V., Samanvitha, S. K., Shobana, N., Renitta, E. R., Senthilkumar, P., Kumar, S. S., Abirami, S., Dhiva, S., Bavanilatha, M., Prakash, P., Saigeetha, S., Shree, K. S., & Thirumurugan, R. (2021). The synthesis, characterization and applications of polyhydroxyalkanoates (PHAs) and PHA-based nanoparticles. Polymers, 13(19), 3302. https://doi.org/10.3390/polym13193302
Shams, M., Alam, I., & Mahbub, M. S. (2021). Plastic pollution during COVID-19: Plastic waste directives and its long-term impact on the environment. Environmental Advances, 5, 100119. https://doi.org/10.1016/j.envadv.2021.100119
Shi, X., Cui, L., Xu, C., & Wu, S. (2025). Next-generation bioplastics for food packaging: Sustainable materials and applications. Materials, 18(12), 2919. https://doi.org/10.3390/ma18122919
Siracusa, V., & Blanco, I. (2020). Bio-polyethylene (Bio-PE), bio-polypropylene (Bio-PP) and bio-poly(ethylene terephthalate) (Bio-PET): Recent developments in bio-based polymers analogous to petroleum-derived ones for packaging and engineering applications. Polymers, 12(8), 1641. https://doi.org/10.3390/polym12081641
Thushari, G., & Senevirathna, J. (2020). Plastic pollution in the marine environment. Heliyon, 6(8), e04709. https://doi.org/10.1016/j.heliyon.2020.e04709
UNSTATS. (2022). SDG reports Goal 14. United Nations Statistics Division. Retrieved February 18, 2025, from https://unstats.un.org/sdgs/report/2022/goal-14/
Vigneswari, S., Noor, M. S. M., Amelia, T. S. M., Balakrishnan, K., Adnan, A., Bhubalan, K., Amirul, A. A., & Ramakrishna, S. (2021). Recent advances in the biosynthesis of polyhydroxyalkanoates from lignocellulosic feedstocks. Life, 11(8), 807. https://doi.org/10.3390/life11080807
Wang, L., Bank, M. S., Rinklebe, J., & Hou, D. (2023). Plastic–rock complexes as hotspots for microplastic generation. Environmental Science & Technology, 57(17), 7009–7017. https://doi.org/10.1021/acs.est.3c00662
Yadav, B., Talan, A., Tyagi, R., & Drogui, P. (2021). Concomitant production of value-added products with polyhydroxyalkanoate (PHA) synthesis: A review. Bioresource Technology, 337, 125419. https://doi.org/10.1016/j.biortech.2021.125419
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2025 Jesús David Castilla Marroquín, Francisco Hernández Rosas, José Andrés Herrera Corredor, Neith Aracely Pacheco López, Ricardo Hernandez Martínez

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.










