Los polihidroxialcanoatos como una alternativa para reducir el impacto ambiental ocasionado por los plásticos convencionales

Autores/as

Palabras clave:

Biopolímeros, microplásticos, plásticos convencionales, biodegradable

Resumen

Los plásticos convencionales han generado graves problemas ambientales. Más de 380 millones de toneladas anuales de residuos plásticos terminan vertidos en los ecosistemas terrestres y marinos. Además, terminan inmersos en la cadena alimentaria humana. Los bioplásticos, como los polihidroxialcanoatos, surgen como una alternativa sostenible, debido a sus características son adecuados para ser utilizados en industrias tales como la alimentaria, biomédica y agroindustrial en general. Representan una alternativa para reducir la dependencia a los plásticos convencionales, sin embargo, actualmente, la industria de los bioplásticos enfrenta retos como altos costos de producción y falta de conciencia pública. El uso de materias primas de bajo costo, como los coproductos agroindustriales, la creación de políticas de apoyo y programas orientados a la investigación, desarrollo y difusión de estos biopolímeros podría favorecer su disponibilidad, fomentar su uso en lugar de los plásticos convencionales y al mismo tiempo reducir los costos de producción.

Descargas

Los datos de descargas todavía no están disponibles.

Información de Publicación

Metric
Este artículo
Otros artículos
Revisores por pares 
2.4 promedio

Perfiles de revisores  N/D

Declaraciones del autor

Declaraciones del autor
Este artículo
Otros artículos
Disponibilidad de datos 
N/A
16%
Financiamiento externo 
No
32% con financiadores
Intereses conflictivos 
N/D
11%
Metric
Para esta revista
Otras revistas
Artículos aceptados 
88%
33%
Días hasta la publicación 
229
145

Indexado en

Editor y comité editorial
perfiles
Sociedad académica 
N/D

Citas

Amabile, C., Abate, T., Muñoz, R., Chianese, S., & Musmarra, D. (2024). Production of poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) from methane and volatile fatty acids: Properties, metabolic routes and current trend. The Science of the Total Environment, 927, 172138. https://doi.org/10.1016/j.scitotenv.2024.172138

Andhalkar, V. V., Foong, S. Y., Kee, S. H., Lam, S. S., Chan, Y. H., Djellabi, R., Bhubalan, K., Medina, F., & Constantí, M. (2023). Integrated biorefinery design with techno‐economic and life cycle assessment tools in polyhydroxyalkanoates processing. Macromolecular Materials and Engineering, 308(11). https://doi.org/10.1002/mame.202300100

Bai, Z., Wang, N., & Wang, M. (2021). Effects of microplastics on marine copepods. Ecotoxicology and Environmental Safety, 217, 112243. https://doi.org/10.1016/j.ecoenv.2021.112243

Chemello, G., Trotta, E., Notarstefano, V., Papetti, L., Di Renzo, L., Matiddi, M., Silvestri, C., Carnevali, O., & Gioacchini, G. (2023). Microplastics evidence in yolk and liver of loggerhead sea turtles (Caretta caretta), a pilot study. Environmental Pollution, 337, 122589. https://doi.org/10.1016/j.envpol.2023.122589

De Paula, C. B. C., De Paula-Elias, F. C., Rodrigues, M. N., Coelho, L. F., De Oliveira, N. M. L., De Almeida, A. F., & Contiero, J. (2021). Polyhydroxyalkanoate synthesis by Burkholderia glumae into a sustainable sugarcane biorefinery concept. Frontiers in Bioengineering and Biotechnology, 8. https://doi.org/10.3389/fbioe.2020.631284

Dindar, E. (2025). Impact of microplastic contamination on phosphorus availability, alkaline phosphatase activity, and polymer degradation in soil. Polymers, 17(12), 1586. https://doi.org/10.3390/polym17121586

Di Giacinto, F., Di Renzo, L., Mascilongo, G., Notarstefano, V., Gioacchini, G., Giorgini, E., Bogdanović, T., Petričević, S., Listeš, E., Brkljača, M., Conti, F., Proficco, C., Zambuchini, B., Di Francesco, G., Giansante, C., Diletti, G., Ferri, N., & Berti, M. (2023). Detection of microplastics, polymers and additives in edible muscle of swordfish (Xiphias gladius) and bluefin tuna (Thunnus thynnus) caught in the Mediterranean Sea. Journal of Sea Research, 192, 102359. https://doi.org/10.1016/j.seares.2023.102359

FAO. (2024). FAO major fishing areas. Fisheries and Aquaculture. Retrieved February 18, 2025, from https://www.fao.org/fishery/en/area/search

GO!PHA. (2022). About GO!PHA. Retrieved March 6, 2025, from https://www.gopha.org/who-we-are

Hierro-Iglesias, C., Chimphango, A., Thornley, P., & Fernández-Castané, A. (2022). Opportunities for the development of cassava waste biorefineries for the production of polyhydroxyalkanoates in Sub-Saharan Africa. Biomass and Bioenergy, 166, 106600. https://doi.org/10.1016/j.biombioe.2022.106600

Ita-Nagy, D., Vázquez-Rowe, I., & Kahhat, R. (2022). Developing a methodology to quantify mismanaged plastic waste entering the ocean in coastal countries. Journal of Industrial Ecology, 26(6), 2108–2122. https://doi.org/10.1111/jiec.13349

Kalia, V. C., Patel, S. K. S., & Lee, J. (2023). Exploiting polyhydroxyalkanoates for biomedical applications. Polymers, 15(8), 1937. https://doi.org/10.3390/polym15081937

Kaniuk, Ł., & Stachewicz, U. (2021). Development and advantages of biodegradable PHA polymers based on electrospun PHBV fibers for tissue engineering and other biomedical applications. ACS Biomaterials Science & Engineering, 7(12), 5339–5362. https://doi.org/10.1021/acsbiomaterials.1c00757

Khairul, S. M., Mahyudin, N. A., Abas, F., Jamaludin, N., & Rashid, N. K. M. A. (2022). The proximate composition and metabolite profiling of sugarcane (Saccharum officinarum) molasses. Malaysian Applied Biology, 51(2), 63–68. https://doi.org/10.55230/mabjournal.v51i2.2259

Koller, M., & Mukherjee, A. (2022). A new wave of industrialization of PHA biopolyesters. Bioengineering, 9(2), 74. https://doi.org/10.3390/bioengineering9020074

Koller, M., & Rittmann, S. K. (2022). Haloarchaea as emerging big players in future polyhydroxyalkanoate bioproduction: Review of trends and perspectives. Current Research in Biotechnology, 4, 377–391. https://doi.org/10.1016/j.crbiot.2022.09.002

Ladhari, S., Vu, N., Boisvert, C., Saidi, A., & Nguyen-Tri, P. (2023). Recent development of polyhydroxyalkanoates (PHA)-based materials for antibacterial applications: A review. ACS Applied Bio Materials, 6(4), 1398–1430. https://doi.org/10.1021/acsabm.3c00078

MacLeod, M., Arp, H. P. H., Tekman, M. B., & Jahnke, A. (2021). The global threat from plastic pollution. Science, 373(6550), 61–65. https://doi.org/10.1126/science.abg5433

Makhdoumi, P., Hossini, H., & Pirsaheb, M. (2021). A review of microplastic pollution in commercial fish for human consumption. Reviews on Environmental Health, 38(1), 97–109. https://doi.org/10.1515/reveh-2021-0103

Millican, J. M., & Agarwal, S. (2021). Plastic pollution: A material problem? Macromolecules, 54(10), 4455–4469. https://doi.org/10.1021/acs.macromol.0c02814

Nghiem, L. D., Iqbal, H. M., & Zdarta, J. (2021). The shadow pandemic of single-use personal protective equipment plastic waste: A blueprint for suppression and eradication. Case Studies in Chemical and Environmental Engineering, 4, 100125. https://doi.org/10.1016/j.cscee.2021.100125

Naser, A. Z., Deiab, I., & Darras, B. M. (2021). Poly(lactic acid) (PLA) and polyhydroxyalkanoates (PHAs), green alternatives to petroleum-based plastics: A review. RSC Advances, 11(28), 17151–17196. https://doi.org/10.1039/d1ra02390j

NOAA. (2022). Marine microplastic concentrations. National Centers for Environmental Information. Retrieved February 14, 2025, from https://experience.arcgis.com/experience/b296879cc1984fda833a8acc93e31476/page/Page/?views=DataInformation%2CSample#data_s=id%3AdataSource_1-18cf9a85fdd-layer-4%3A3857

Paloyan, A., Tadevosyan, M., Ghevondyan, D., Khoyetsyan, L., Karapetyan, M., Margaryan, A., Antranikian, G., & Panosyan, H. (2025). Biodegradation of polyhydroxyalkanoates: Current state and future prospects. Frontiers in Microbiology, 16, 1542468. https://doi.org/10.3389/fmicb.2025.1542468

Park, H., He, H., Yan, X., Liu, X., Scrutton, N. S., & Chen, G. (2024). PHA is not just a bioplastic! Biotechnology Advances, 71, 108320. https://doi.org/10.1016/j.biotechadv.2024.108320

Pilapitiya, P. N. T., & Ratnayake, A. S. (2024). The world of plastic waste: A review. Cleaner Materials, 11, 100220. https://doi.org/10.1016/j.clema.2024.100220

Samrot, A. V., Samanvitha, S. K., Shobana, N., Renitta, E. R., Senthilkumar, P., Kumar, S. S., Abirami, S., Dhiva, S., Bavanilatha, M., Prakash, P., Saigeetha, S., Shree, K. S., & Thirumurugan, R. (2021). The synthesis, characterization and applications of polyhydroxyalkanoates (PHAs) and PHA-based nanoparticles. Polymers, 13(19), 3302. https://doi.org/10.3390/polym13193302

Shams, M., Alam, I., & Mahbub, M. S. (2021). Plastic pollution during COVID-19: Plastic waste directives and its long-term impact on the environment. Environmental Advances, 5, 100119. https://doi.org/10.1016/j.envadv.2021.100119

Shi, X., Cui, L., Xu, C., & Wu, S. (2025). Next-generation bioplastics for food packaging: Sustainable materials and applications. Materials, 18(12), 2919. https://doi.org/10.3390/ma18122919

Siracusa, V., & Blanco, I. (2020). Bio-polyethylene (Bio-PE), bio-polypropylene (Bio-PP) and bio-poly(ethylene terephthalate) (Bio-PET): Recent developments in bio-based polymers analogous to petroleum-derived ones for packaging and engineering applications. Polymers, 12(8), 1641. https://doi.org/10.3390/polym12081641

Thushari, G., & Senevirathna, J. (2020). Plastic pollution in the marine environment. Heliyon, 6(8), e04709. https://doi.org/10.1016/j.heliyon.2020.e04709

UNSTATS. (2022). SDG reports Goal 14. United Nations Statistics Division. Retrieved February 18, 2025, from https://unstats.un.org/sdgs/report/2022/goal-14/

Vigneswari, S., Noor, M. S. M., Amelia, T. S. M., Balakrishnan, K., Adnan, A., Bhubalan, K., Amirul, A. A., & Ramakrishna, S. (2021). Recent advances in the biosynthesis of polyhydroxyalkanoates from lignocellulosic feedstocks. Life, 11(8), 807. https://doi.org/10.3390/life11080807

Wang, L., Bank, M. S., Rinklebe, J., & Hou, D. (2023). Plastic–rock complexes as hotspots for microplastic generation. Environmental Science & Technology, 57(17), 7009–7017. https://doi.org/10.1021/acs.est.3c00662

Yadav, B., Talan, A., Tyagi, R., & Drogui, P. (2021). Concomitant production of value-added products with polyhydroxyalkanoate (PHA) synthesis: A review. Bioresource Technology, 337, 125419. https://doi.org/10.1016/j.biortech.2021.125419

Descargas

Publicado

2026-02-11

Cómo citar

Castilla Marroquín, J. D., Hernández Rosas, F., Herrera Corredor, J. A., Pacheco López, N. A., & Hernandez Martínez, R. (2026). Los polihidroxialcanoatos como una alternativa para reducir el impacto ambiental ocasionado por los plásticos convencionales. Pädi Boletín Científico De Ciencias Básicas E Ingenierías Del ICBI, 14(27). Recuperado a partir de https://repository.uaeh.edu.mx/revistas/index.php/icbi/article/view/15360

Número

Sección

Artículos de revisión