Compuestos de coordinación: agentes anticancerígenos

Autores/as

Palabras clave:

Cáncer, Compuestos de coordinación, Cis-platino, Anticancerígeno

Resumen

El término “Cáncer” se usa para referirse a un conjunto de enfermedades que se pueden originar en casi cualquier órgano o tejido del cuerpo cuando se generan células anormales que crecen de forma descontrolada, sobrepasando sus límites habituales e invadiendo partes adyacentes del cuerpo o se propagan a otros órganos. Actualmente, la investigación sobre el cáncer es multidisciplinaria involucra a la genética, a la biología molecular, la inmunología y a la química entre otras disciplinas relacionadas. En el caso de los fármacos, se buscan compuestos químicos que tengan una mayor efectividad y selectividad contra células malignas y menor toxicidad hacia células sanas. A pesar de los avances en las investigaciones, solo los fármacos basados en platino han sido aprobados clínicamente. Esto ha impulsado el estudio de otros metales para desarrollar compuestos de coordinación menos tóxicos y efectivos contra cánceres resistentes al compuesto denominado “cis-platino”. En este trabajo se presenta un panorama general de la aplicación como agentes anticancerígenos de compuestos de coordinación.

Descargas

Los datos de descargas todavía no están disponibles.

Información de Publicación

Metric
Este artículo
Otros artículos
Revisores por pares 
2.4 promedio

Perfiles de revisores  N/D

Declaraciones del autor

Declaraciones del autor
Este artículo
Otros artículos
Disponibilidad de datos 
N/A
16%
Financiamiento externo 
No
32% con financiadores
Intereses conflictivos 
N/D
11%
Metric
Para esta revista
Otras revistas
Artículos aceptados 
87%
33%
Días hasta la publicación 
73
145

Indexado en

Editor y comité editorial
perfiles
Sociedad académica 
N/D

Biografía del autor/a

Q. Benjamín Martín Hernández, Universidad Autónoma del Estado de Hidalgo

Licenciado en Química y estudiante de la Maestría en Química del Área Académica de Química de la  Universidad Autónoma del Estado de Hidalgo.

Dra. Gloria Sánchez-Cabrera, Universidad Autónoma del Estado de Hidalgo

Profesora Investigadora del Área Académica de Química, Universidad Autónoma del Estado de Hidalgo, SNII I, PRODEP. LGAC: Diseño, Síntesis y Caracterización Estructural y Electrónica de Compuestos Inorgánicos.

Dr. Francisco Javier Zuno Cruz, Universidad Autónoma del Estado de Hidalgo

Profesor Investigador del Área Académica de Química, Universidad Autónoma del Estado de Hidalgo, SNII I, PRODEP. LGAC: Diseño, Síntesis y Caracterización Estructural y Electrónica de Compuestos Inorgánicos.

Dra. Verónica Salazar Pereda, Universidad Autónoma del Estado de Hidalgo

Profesor Investigador del Área Académica de Química, Universidad Autónoma del Estado de Hidalgo, SNII III, PRODEP. LGAC: Diseño, Síntesis y Caracterización Estructural y Electrónica de Compuestos Inorgánicos.

Citas

Adhikari, S., Nath, P., Das, A., Datta, A., Baildya, N., Duttaroy, A. K., & Pathak, S. (2024). A review on metal complexes and its anti-cancer activities: Recent updates from in vivo studies. Biomedicine & Pharmacotherapy, 171, 116211. doi: https://doi.org/10.1016/j.biopha.2024.116211

Alderen, R. A., Hall, M. D., & Hambley, T. W. (2006). The discovery and development of cisplatin. Journal of chemical education, 83(5), 728. doi:https://doi.org/10.1021/ed083p728

Allardyce, C. S., Dorcier, A., Scolaro, C., & Dyson, P. J. (2005). Development of organometallic (organo‐transition metal) pharmaceuticals. Applied organometallic chemistry, 19(1), 1-10. doi:https://doi.org/10.1002/aoc.725

American Cancer Society. (2025a). The Cancer Atlas. Retrieved from https://canceratlas.cancer.org/

American Cancer Society. (2025b). History of cancer: 20th century. Retrieved from The Cancer Atlas: https://canceratlas.cancer.org/history-cancer/20th-century/

Aris, S. M., & Farrell, N. M. (2009). Towards Antitumor Active trans‐Platinum Compounds. European journal of inorganic chemistry, 2009(10), 1293-1302. doi:https://doi.org/10.1002/ejic.200801118

Banti, C. N., & Hadjikakou, S. K. (2013). Banti, C. N., & Hadjikakou, S. K. (2013). Anti-proliferative and anti-tumor activity of silver (I) compounds. Metallomics, 5(6), 569-596. doi:https://doi.org/10.1039/c3mt00046j

Bernal-Méndez, E., Boudvillain, M., Gónzalez-Vílchez, F., & Leng, M. (1997). Chemical versatility of transplatin monofunctional adducts within multiple site-specifically platinated DNA. Biochemistry, 36(24), 7281-7287. doi:https://doi.org/10.1021/bi9703148

Brown, B. (2023). Updating the Definition of Cancer. AACRJournals, 21, 1142-1147. doi:https://doi.org/10.30878/ces.v32n0a44

Brown, J. S., Amend, S. R., Austin, R. H., Gatenby, R. A., Hammarlund, E. U., & Pienta, K. J. (2023). Updating the definition of cancer. Molecular Cancer Research, 21(11), 1142-1147. doi:https://doi.org/10.1158/1541-7786.MCR-23-0411

Brummelkamp, T. R., & Bernards, R. (2003). New tools for functional mammalian cancer genetics. Nature Reviews Cancer, 3(10), 781-789. doi:https://doi.org/10.1038/nrc1191

Burger, H., Zoumaro-Djayoon, A., Boersma, A. W., Helleman, J., Berns, E. M., Mathijssen, R. H., & Wiemer, E. A. (2010). Differential transport of platinum compounds by the human organic cation transporter hOCT2 (hSLC22A2). British journal of pharmacology, 159(4), 898-908. doi:https://doi.org/10.1111/j.1476-5381.2009.00569.x

Chen, J., & Stubbe, J. (2005). Bleomycins: towards better therapeutics. Nature Reviews Cancer, 5(2), 102-112. doi:https://doi.org/10.1038/nrc1547

Czarnomysy, R., Radomska, D., Szewczyk, O. K., Roszczenko, P., & Bielawski, K. (2021). Platinum and palladium complexes as promising sources for antitumor treatments. International journal of molecular sciences, 22(15), 8271. doi:https://doi.org/10.3390/ijms22158271

Descôteaux, C., Provencher-Mandeville, J., Mathieu, I., Perron, V., Mandal, S. K., Asselin, É., & Bérubé, G. (2003). Synthesis of 17β-estradiol platinum (II) complexes: biological evaluation on breast cancer cell lines. Bioorganic & medicinal chemistry letters, 13(22), 3927-3931. doi:https://doi.org/10.1016/j.bmcl.2003.09.011

Fernández, R., Melchart, M., Habtemariam, A., Parsons, S., & Sadler, P. J. (2004). Use of Chelating Ligands to Tune the Reactive Site of Half‐Sandwich Ruthenium (ii)–Arene Anticancer Complexes. Chemistry-A European Journal, 10(20), 5173-5179. doi:https://doi.org/10.1002/chem.200400640

Fries, J. F., Bloch, D., Spitz, P., & Mitchell, D. M. (1985). Cancer in rheumatoid arthritis: a prospective long-term study of mortality. The American Journal of Medicine, 78(1), 56-59. doi:https://doi.org/10.1016/0002-9343(85)90247-5

Gabbiani, C., Cinellu, M. A., Maiore, L., Massai, L., Scaletti, F., & Messori, L. (2012). Chemistry and biology of three representative gold (III) compounds as prospective anticancer agents. Inorganica Chimica Acta, 393, 115-124. doi:https://doi.org/10.1016/j.ica.2012.07.016

Ghosh, S. (2019). Cisplatin: The first metal based anticancer drug. Bioorganic Chemistry, 88, 102925. doi: https://doi.org/10.1016/j.bioorg.2019.102925

Hartinger, C. G., Zorbas-Seifried, S., Jakupec, M. A., Kynast, B., Zorbas, H., & Keppler, B. K. (2006). From bench to bedside–preclinical and early clinical development of the anticancer agent indazolium trans-[tetrachlorobis (1H-indazole) ruthenate (III)](KP1019 or FFC14A). Journal of inorganic biochemistry, 100(5-6), 891-904. doi:https://doi.org/10.1016/j.jinorgbio.2006.02.013

Hindo, S. S., Frezza, M., Tomco, D., Heeg, M. J., Hryhorczuk, L., McGarvey, B. R., & Verani, C. N. (2009). Metals in anticancer therapy: copper (II) complexes as inhibitors of the 20S proteasome. European journal of medicinal chemistry, 44(11), 4353-4361. doi:https://doi.org/10.1016/j.ejmech.2009.05.019

Holmgren, A. (1989). Thioredoxin and glutaredoxin systems. Journal of Biological Chemistry, 264(24), 13963-13966.

Ishida, S., Lee, J., Thiele, D. J., & Herskowitz, I. (2002). Uptake of the anticancer drug cispplatin mediated by copper transporter Ctr1 in yeast and mammals. Proceedings of the National Academy of Sciences, 99(22), 14298-14302. doi:https://doi.org/10.1073/pnas.162491399

Jia, P., Ouyang, R., Cao, P., Tong, X., Zhou, X., Lei, T., & Zhou, S. (2017). Recent advances and future development of metal complexes as anticancer agents. Journal of Coordination Chemistry, 70(13), 2175-2201. doi:https://doi.org/10.1080/00958972.2017.1349313

Liang, X., Luan, S., Yin, Z., He, M., He, C., Yin, L., & Zhang, W. (2018). Recent advances in the medical use of silver complex. European journal of medicinal chemistry, 157, 62-80. doi:https://doi.org/10.1016/j.ejmech.2018.07.057

Marcon, G., Carotti, S., Coronnello, M., Messori, L., Mini, E., Orioli, P., & Minghetti, G. (2002). Gold (III) complexes with bipyridyl ligands: solution chemistry, cytotoxicity, and DNA binding properties. Journal of Medicinal Chemistry, 45(8), 1672-1677. doi:https://doi.org/10.1021/jm010997w

Marzano, C., Mazzega Sbovata, S., Gandin, V., Colavito, D., Del Guidice, E., Michelin, R. A., & Bertani, R. (2010). A new class of antitumor trans-amine-amidine-Pt (II) cationic complexes: influence of chemical structure and solvent on in vitro and in vivo tumor cell proliferation. Journal of medicinal chemistry, 53(16), 6210-6227. doi:https://doi.org/10.1021/jm1006534

Niramol, S. (n.d.).

Pongratz, M., Schluga, P., Jakupec, M. A., Arion, V. B., Hartinger, C. G., Allmaier, G., & Keppler, B. K. (2004). Transferrin binding and transferrin-mediated cellular uptake of the ruthenium coordination compound KP1019, studied by means of AAS, ESI-MS and CD spectroscopy. Journal of Analytical Atomic Spectrometry, 19(1), 46-51. doi:https://doi.org/10.1039/B309160K

Ranasinghe, R., Mathai, M. L., & Zulli, A. (2022). Cisplatin for cancer therapy and overcoming chemoresistance.

Heliyon, 8(9). doi: https://doi.org/10.1016/j.heliyon.2022.e10608

Ruiz-Azuara, L., & E Bravo-Gomez, M. (2010). Copper compounds in cancer chemotherapy. Current medicinal chemistry, 17(31), 3606-3615. doi:https://doi.org/10.2174/092986710793213751

Saha, P., Descôteaux, C., Brasseur, K., Fortin, S., Leblanc, V., Parent, S., & Bérubé, G. (2012). Synthesis, antiproliferative activity and estrogen receptor α affinity of novel estradiol-linked platinum (II) complex analogs to carboplatin and oxaliplatin. Potential vector complexes to target estrogen-dependant tissues. European journal of medicinal chemistry, 48, 385-390. doi:https://doi.org/10.1016/j.ejmech.2011.12.017

Saini, A., Kumar, M., Bhatt, S., Saini, V., & Malik, A. (2020). Cancer Causes and treatments. Int J Pharm Sci Res, 11(7), 3121-3134. doi:10.13040/IJPSR.0975-8232.11(7).3121-34

Seluanov, A., Gladyshev, V. N., Vijg, J., & Gorbunova, V. (2018). Mechanisms of cancer resistance in long-lived mammals. Nature Reviews Cancer, 18, 433-441. doi:https://doi.org/10.1038/s41568-018-0004-9

Shumi, G., Desalegn, T., Demissie, T. B., Ramachandran, V. P., & Eswaramoorthy, R. (2022). Metal Complexes in Target-Specific Anticancer Therapy: Recent Trends and Challenges. Journal of Chemistry, 2022(1), 9261683. doi:https://doi.org/10.1155/2022/9261683

Sijongesonke, P., & Blessing, A. (2019). Ferrocene-Based Compounds with Antimalaria/Anticancer Activity. Molecules, 24(19), 3604. doi:

https://doi.org/10.3390/molecules24193604

Song, I. S., Savaraj, N., Siddik, Z. H., Liu, P., Wei, Y., Wu, C. J., & Kuo, M. T. (2004). Role of human copper transporter Ctr1 in the transport of platinum-based antitumor agents in cisplatin-sensitive and cisplatin-resistent cells. Molecular cancer therapeutics, 3(12), 1543-1549. doi:https://doi.org/10.1158/1535-7163.1543.3.12

Spreckelmeyer, S., Orvig, C., & Casini, A. (2014). Cellular transport mechanisms of cytotoxic metallodrugs: An overview beyond cisplatin. Molecules, 19(10), 15584-15610. doi:https://doi.org/10.3390/molecules191015584

Stanger, B. Z., & Wahl, G. M. (2024). Cancer as a disease of development gone awry. Annual Review of Pathology: Mechanisms of Disease, 19(1), 397-421. doi:https://doi.org/10.1146/annurev-pathmechdis-031621-025610

Süss-Fink, G. (2010). Arene ruthenium complexes as anticancer agents. Dalton transactions, 39(7), 1673-1688. doi:https://doi.org/10.1039/B916860P

Tiekink. (2002). Gold derivatives for the treatment of cancer. Critical reviews in oncology/hematology, 42(3), 225-248. doi:https://doi.org/10.1016/S1040-8428(01)00216-5

Torti, S. V., & Torti, F. M. (2013). Iron and cancer: more ore to be mined. Nature Reviews Cancer, 13(5), 342-355. doi:doi.org/10.1038/nrc3495

Trudu, F., Amato, F., Vaňhara, P., Pivetta, T., Peña-Méndez, E. M., & Havel, J. (2015). Coordination compounds in cancer: Past, present and perspectives. Journal of applied biomedicine, 13(2), 79-103. doi:https://doi.org/10.1016/j.jab.2015.03.003

Wang, X., & Guo, Z. (2008). Towards the rational design of platinum (II) and gold (III) complexes as antitumour agents. Dalton Transactions, 12, 1521-1532. doi:https://doi.org/10.1039/B715903J

Wang, Y., He, Q. Y., Sun, R. W., Che, C. M., & Chiu, J. F. (2005). Gold (III) porphyrin 1a induced apoptosis by mitochondrial death pathways related to reactive oxygen species. Cancer research, 65(24), 11553-11564. doi:https://doi.org/10.1158/0008-5472.CAN-05-2867

World Health Organization. (2025). Cancer. Retrieved from https://www.who.int/es/health-topics/cancer#tab=tab_1

Xie, L., Luo, Z., Zhao, Z., & Chen, T. (2017). Anticancer and antiangiogenic iron (II) complexes that target thioredoxin reductase to trigger cancer cell apoptosis. Journal of medicinal chemistry, 60(1), 202-214. doi:https://doi.org/10.1021/acs.jmedchem.6b00917

Descargas

Publicado

2025-09-12

Cómo citar

Martín Hernández, B., Sánchez-Cabrera, G., Zuno-Cruz, F. J., & Salazar Pereda, V. (2025). Compuestos de coordinación: agentes anticancerígenos. Pädi Boletín Científico De Ciencias Básicas E Ingenierías Del ICBI, 13(26), 1–9. Recuperado a partir de https://repository.uaeh.edu.mx/revistas/index.php/icbi/article/view/15406

Número

Sección

Artículos de revisión