Propiedades electrónicas y estructurales de Sc₂C, Y₂C y su heteroestructura mediante simulaciones DFT con SIESTA
DOI:
https://doi.org/10.29057/icbi.v13iEspecial4.15921Palabras clave:
Electruro, MXene, van der Waals, Heteroestructura, Sc2C,Y2CResumen
El compuesto Sc₂C es un electruro (electride, en inglés) que, al disponerse en dos dimensiones y combinarse con un MXeno, adquiere propiedades únicas, entre ellas un comportamiento semiconductivo. Por su parte, Y₂C es un material que exhibe una amplia variedad de propiedades físicas y electrónicas de gran interés. En el presente trabajo se estudia la interacción entre ambos compuestos dentro de una celda trigonal (hexagonal), dando lugar a una estructura unida principalmente por fuerzas de Van der Waals. Mediante simulaciones de primeros principios, se analizan las propiedades electrónicas emergentes de esta combinación, ajustando diversos parámetros estructurales para obtener una configuración estable. Como resultado, se construye una heteroestructura de ambos materiales, cuyas características electrónicas pueden ofrecer potencial para aplicaciones en dispositivos electrónicos basados en materiales bidimensionales
Descargas
Información de Publicación
Perfiles de revisores N/D
Declaraciones del autor
Indexado en
- Sociedad académica
- N/D
Citas
Bu, Y., & Sun, M. (2025). Tuning the electronic properties of WS 2/Sc 2 C heterostructures via surface functionalization: a first-principles study. Physical Chemistry Chemical Physics. https://doi.org/10.1039/D5CP01402F2
Chowdhury, S., Parvin, M., Chung, J. S., Kang, S. G., & Gupta, B. C. (2025). Exploring Sc2C and fluorinated Sc2C MXenes for high-performance Mg-ion battery anodes. Journal of Power Sources, 653, 237725. https://doi.org/10.1016/j.jpowsour.2025.2377252
Dale, S. G., & Johnson, E. R. (2018). Theoretical descriptors of electrides. The Journal of Physical Chemistry A, 122(49), 9371–9391. https://doi.org/10.1021/acs.jpca.8b08548
Feng, C., Shan, J., Xu, A., Xu, Y., Zhang, M., & Lin, T. (2017). First-principle study of pressure-induced phase transitions and electronic properties of electride Y2C. Solid State Communications, 266, 34-38. 10.1016/j.ssc.2017.08.016
He, Y. (2015). The structural, electronic, elastic and thermodynamics properties of 2D transition-metal electride Y₂C via first-principles calculations. Journal of Alloys and Compounds, 654, 180–184. https://doi.org/10.1016/j.jallcom.2015.09.133
Hong, L., Klie, R. F., & Öğüt, S. (2016). First-principles study of size- and edge-dependent properties of MXene nanoribbons. Physical Review B, 93(11), 115412. https://doi.org/10.1103/physrevb.93.115412
Hosono, H., & Kitano, M. (2021). Advances in materials and applications of inorganic electrides. Chemical Reviews, 121(5), 3121–3185. https://doi.org/10.1021/acs.chemrev.0c01071
Inoshita, T., Hamada, N., & Hosono, H. (2015). Ferromagnetic instability of interlayer floating electrons in the quasi-two-dimensional electride Y₂C. Physical Review B, 92(20), 201109. https://doi.org/10.1103/physrevb.92.201109
Khan, K., Tareen, A. K., Ahmad, W., Hussain, I., Chaudhry, M. U., Mahmood, A., Khan, M. F., Zhang, H., & Xie, Z. (2024). Recent advances in non-TI MXenes: Synthesis, properties, and novel applications. Advanced Science. https://doi.org/10.1002/advs.202303998
Kolavada, H., Shukla, R. S., Gajjar, P. N., & Gupta, S. K. (2025). Tuning properties of binary functionalization of Sc2C MXenes for supercapacitor electrodes. Journal of Power Sources, 626, 235796. https://doi.org/10.1016/j.jpowsour.2024.2357962
McRae, L. M., Radomsky, R. C., Pawlik, J. T., Druffel, D. L., Sundberg, J. D., Lanetti, M. G., Donley, C. L., White, K. L., & Warren, S. C. (2022). Sc₂C, a 2D semiconducting electride. Journal of the American Chemical Society, 144(24), 10862–10869. https://doi.org/10.1021/jacs.2c03024
McRae, L., Radomsky, R., Pawlik, J., Druffel, D., Sundberg, J., Lanetti, M., ... & Warren, S. (2021). Design of semiconducting electrides via electron-metal hybridization: the case of Sc2C.https://chemrxiv.org/engage/chemrxiv/article-details/611e6702fa49ace6e8562214
Modi, N., Naik, Y., Khengar, S. J., Shah, D. B., & Thakor, P. B. (2024). A DFT investigation of metal-ions intercalated Y₂N MXene as an anode of metal-ion batteries. Deleted Journal, 245(1). https://doi.org/10.1007/s10751-024-02002-z
Modi, N., Naik, Y., Khengar, S., Jariwala, P., Shah, D., & Thakor, P. (2023). Theoretical investigations of asymmetric functionalized Y₂C-based MXene monolayers. Solid State Communications, 372, 115303. https://doi.org/10.1016/j.ssc.2023.115303
Nazir, S., Shakil, M., Gillani, S. S. A., Hussain, I., Bano, N., & Alanazi, A. K. (2025). DFT study of vacancy induced defects in functionalized Sc2C MXenes and their impact on structural, electronic and optical response. Applied Physics A, 131(11), 1-18. https://doi.org/10.1007/s00339-025-09059-92
Roszak, S., & Balasubramanian, K. (1998). Structural and thermodynamic properties of diyttrium carbides Y₂Cₙ (n = 2−8): A theoretical study. The Journal of Physical Chemistry A, 102(29), 6004–6009. https://doi.org/10.1021/jp9811833
Shakil, M., Nazir, S., Gillani, S. S. A., Alsaiari, N. S., Alomayrah, N., & Al-Buriahi, M. S. (2024). Effect on structural, electronic and optical properties of mixed functionalized two-dimensional Sc₂CTₓT′₁₋ₓ MXenes: A DFT study. Physica B: Condensed Matter, 689, 416197. https://doi.org/10.1016/j.physb.2024.416197
Thanasarnsurapong, T., Sringamprom, S., Sirisaksoontorn, W., Jungthawan, S., Kaewmaraya, T., & Boonchun, A. (2024). Reversible hydrogen storage in Y₂C MXene under the influence of functional groups (F, Cl, OH). Scientific Reports, 14(1). https://doi.org/10.1038/s41598-024-75662-0
Tojigamori, T., Matsui, N., Suzuki, K., Hirayama, M., Abe, T., & Kanno, R. (2024). Fluorination/defluorination behavior of Y₂C in fluoride-ion battery anodes. ACS Applied Energy Materials, 7(3), 1100–1108. https://doi.org/10.1021/acsaem.3c02613
Yin, S., Li, X., & Cui, H. (2023). Theoretical investigation of quantum capacitance of M₂C MXenes as supercapacitor electrode. Physica Status Solidi (B), 260(12). https://doi.org/10.1002/pssb.202300386
Yu, J., Li, K., Hosono, H., & Wang, J. (2025). Fermi-level interstitial electron contributions: A key mechanism driving magnetism in electrides. Chemistry of Materials. https://doi.org/10.1021/acs.chemmater.5c00158
Zhang, Y., El-Demellawi, J. K., Jiang, Q., Ge, G., Liang, H., Lee, K., Dong, X., & Alshareef, H. N. (2020). MXene hydrogels: Fundamentals and applications. Chemical Society Reviews, 49(20), 7229–7251. https://doi.org/10.1039/d0cs00022a
Zhou, J., You, J., Zhao, Y., Feng, Y. P., & Shen, L. (2024). Van der Waals electrides. Accounts of Chemical Research, 57(17), 2572–2581. https://doi.org/10.1021/acs.accounts.4c00394.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2025 Fausto Alejandro Espinosa Reyes, Rommel Flores Cruz, Kevin Alejandro Martínez Legaria, Lesly Sabina Villaseñor Cerón, Heberto Gómez Pozos, Ventura Rodriguez Lugo

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.










