Mejoramiento de concretos por adición de microorganismos marinos
DOI:
https://doi.org/10.29057/icbi.v13iEspecial4.15933Palabras clave:
microorganismo marino, bioconcreto, absorción de agua, autorreparación, coeficiente de sorptividadResumen
Se investigó el potencial uso en bioconcretos de 11 aislados microbianos marinos obtenidos de muestras de agua, sedimentos y fragmentos de un edificio deteriorado en una playa de la costa de Quintana Roo, México; mediante observaciones cualitativas de ureólisis en un medio altamente salino, se obtuvieron resultados positivos en 7 aislados. El aislado con mayor actividad (PTMO4-B2) fue utilizado para formular muestras de concreto con cemento, arena, grava y cultivo microbiano líquido en proporción cultivo/cemento 0.7:1. Para las muestras control se utilizó agua en vez de cultivo microbiano. Las muestras de
concreto demostraron menor absorción de agua con respecto al control (sin cultivo microbiano), así como un coeficiente de sorptividad significativamente menor. La adición del microorganismo también demostró proveer a los concretos capacidad de autorreparación en observaciones cualitativas con grietas artificiales. Esta formulación promete ser una buena alternativa como tratamiento para prevenir y mitigar daños estructurales en construcciones expuestas al ambiente adverso de la costa del Caribe mexicano, siendo un aditivo sustentable proveniente del mismo ambiente.
Descargas
Información de Publicación
Perfiles de revisores N/D
Declaraciones del autor
Indexado en
- Sociedad académica
- N/D
Citas
Achal, V., & Pan, X. (2011). Characterization of Urease and Carbonic Anhydrase Producing Bacteria and Their Role in Calcite Precipitation. Current Microbiology, 62:894-902. DOI 10.1007/s00284-010-9801-4
Achal, V., Mukherjee, A., & Basu, P. C. (2009). Lactose mother liquor as an alternative nutrient source for microbial concrete production by Sporosarcina pasteurii. Journal of Industrial Microbial Biotechnology, 36: 433-438. DOI 10.1007/s10295-008-0514-7
Achal, V., Mukherjee, A., & Reddy, M. S. (2011). Microbial Concrete: Way to Enhance the Durability of Building Structures. Journal of Materials in Civil, 23(11):730-734. DOI: 10.1061/(ASCE)MT.1943-5533.0000159
Achal, V., Mukherjee, A., & Reddy, M. S. (2013). Biogenic treatment improves the durability and remediates the cracks of concrete structures. Construction and Building Materials, 48:1-5. http://dx.doi.org/10.1016/j.conbuildmat.2013.06.061
ASTM C1585. (2004). Standard Test Method for Measurement of Rate of Absorption of Water by Hydraulic Cement Concretes.
De Muynck, W., Debrouwer, D., De Beile, N., & Verstraete, W. (2008). Bacterial carbonate precipitation improves the durability of cementitious materials. Cement and Concrete Research, 38: 1005-1014. doi:10.1016/j.cemconres.2008.03.005
Gilbert, J. A., Steele, J. A., Caporaso, J. G., Steinbruck, L., Reeder, J., Temperton, B., . . . Field, D. (2012). Defining seasonal marine microbial community dynamics. The ISME Journal, 6: 298-308. doi:10.1038/ismej.2011.107
Hernández-Piedrazul, E., Castañeda-Robles, I. E., & Lizárraga-Mendiola, L. (2022). El bioconcreto como agente reparante en estructuras de concreto. Pädi Boletín Científico de Ciencias Básicas e Ingenierías del ICBI, 10(2): 176-183. https://doi.org/10.29057/icbi.v10iEspecial2.8667
Herrera, L. K., & Videla, H. A. (2004). The importance of atmospheric effects on biodeterioration of cultural heritage constructional materials. International Biodeterioration & Biodegradation, 125-134. doi:10.1016/j.ibiod.2004.06.002
Iqbal, D., Wong, L., & Kong, S. (2021). Bio-Cementation in Construction Materials: A Review. Materials, 14,2175. https://doi.org/10.3390/ma14092175
Karimi, N., & Mostofinejad, D. (2020). Bacillus subtilis bacteria used in fiber reinforced concrete and their effects on concrete penetrability. Construction and Building Materials, 117051. https://doi.org/10.1016/j.conbuildmat.2019.117051
Kim, H. J., Eom, H. J., Park, C., Jung, J., Shin, B., Kim, W. Park, W. (2016). Calcium Carbonate Precipitation by Bacillus and Sporosarcina Strains Isolated from Concrete and Analysis of the Bacterial Community of Concrete. J. Microbiol. Biotechnol., 26(3): 540-548
Ley-Paredes, V. J., Cervantes-Uc, J. M., Pérez-Pacheco, E., Ríos-Soberanis, C. R., & Wakayama, S. (2018). Physicochemical and mechanical study of Mayan Archeological stony constructive materials. Journal of Applied Research and Technology, 16: 287-298.
Medeiros-Junior, R. A., Munhoz, G. S., Medeiros, M. H. F. (2019), Correlations between water absorption, electrical resistivity and
compressive strength of concrete with different contents of pozzolan, Revista ALCONPAT, 9 (2), pp. 152 – 166, DOI: http://dx.doi.org/10.21041/ra.v9i2.335
Nguyen, T., Ghorbel, E., Fares, H., & Cousture, A. (2019). Bacterial self-healing of concrete and durability assessment. Cement and Concrete Composites, 103340. https://doi.org/10.1016/j.cemconcomp.2019.103340
Shaheen, N., Arsalan, R., Khaliq, W., Murtaza, H., Iqbal, R., & Humza, M. (2019). Synthesis and characterization of bio-immobilized nano/micro inert and reactive additives for feasibility investigation in self-healing concrete. Construction and Building Materials, 492-506. https://doi.org/10.1016/j.conbuildmat.2019.07.202
Shanmuga, T., Ramesh, N., Agarwal, A., Bhusnur, S., & Chaudhary, K. (2019). Strength and durability characteristics of concrete made by micronized biomass silica and Bacteria-Bacillus sphaericus. Construction and Building Materials, 827-838. https://doi.org/10.1016/j.conbuildmat.2019.07.172
Siddique, R., & Chahal, N. K. (2011). Effect of ureolytic bacteria on concrete properties. Construction and Building Materials, 25: 3791-3801. doi:10.1016/j.conbuildmat.2011.04.010
Stabnikov, V., Jian, C., Ivanov, V., & Li, Y. (2013). Halotolerant, alkaliphilic urease-producing bacteria from different climate zones and their application for biocementation of sand. World Journal of Microbial Biotechnology, 29:1453-1460. https://doi.org/10.1007/s11274-013-1309-1
Straulino, L., Sedov, S., Michelet, D., & Balanzario, S. (2013). Weathering of carbonate materials in ancient Maya constructions (Río Bec and Dzibanché): Limestone and stucco deterioration patterns. Quaternary International, 87-100. http://dx.doi.org/10.1016/j.quaint.2013.06.019
Vijay, K., Murmu, M., & Deo, S. V. (2017). Bacteria based self healing concrete – A review. Construction and Building Materials, 152: 1008-1014. http://dx.doi.org/10.1016/j.conbuildmat.2017.07.040
Wang, J. Y., Soens, H., Verstraete, W., & De Beile, N. (2014). Self-healing concrete by use of microencapsulated bacterial spores. Cement and Concrete Research, 56: 139-152. http://dx.doi.org/10.1016/j.cemconres.2013.11.009
Wong, P. Y., Mal, J., Sandak, A., Luo, L., Jian, J., & Pradhan, N. (2024). Advances in microbial self-healing concrete: A critical review of mechanisms, developments, and future directions. Science of the Total Environment, 947: 174553. https://doi.org/10.1016/j.scitotenv.2024.174553
Zhuang, S., Wang, Q., & Zhang, M. (2022). Water absorption behaviour of concrete: Novel experimental findings and model characterization. Journal of Building Engineering, 53:104602. https://doi.org/10.1016/j.jobe.2022.1046
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2025 Kermin Dayan Peña Santoyo, Ruth López Alcántara, Blanca Azucena García Gual, Brian Alexis Bessichy Portugal, Alejandra Bermúdez Torres, Adrián Bonilla Clavel

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.










