Compuestos bioactivos durante la germinación en cereales: una revisión
DOI:
https://doi.org/10.29057/icbi.v13iEspecial4.15955Palabras clave:
Germinación, Cereales, Compuestos bioactivos, Actividad antioxidanteResumen
Los cereales son cultivos de amplio consumo a nivel mundial por su bajo costo y disponibilidad. Además, los cereales son de gran importancia para la elaboración de una variedad de alimentos, es por ello que los cereales toman mayor relevancia en la industria alimentaria. En diversos estudios se ha demostrado que los cereales no sólo constituyen una fuente importante de carbohidratos, proteínas, vitaminas y minerales, sino también compuestos bioactivos, entre los más relevantes se encuentran los ácidos fenólicos, flavonoides, tocoferoles y carotenoides. Estos compuestos poseen una variedad de beneficios para la salud humana como la prevención de enfermedades no transmisibles (ENT). Un proceso que incrementa la biodisponibilidad y actividad antioxidante de los compuestos bioactivos en cereales, es la germinación, debido a cambios metabólicos en el embrión, principalmente la activación de enzimas y la degradación de compuestos antinutricionales como lectinas, saponinas alcaloides, inhibidores de tripsina etc. aumentando así su valor nutricional.
Descargas
Información de Publicación
Perfiles de revisores N/D
Declaraciones del autor
Indexado en
- Sociedad académica
- N/D
Citas
Adom, K. K., Sorrells, M. E., & Liu, R. H. (2005). Phytochemicals and antioxidant activity of milled fractions of different wheat varieties. Journal of Agricultural and Food Chemistry, 53(6), 2297-2306. https://doi.org/10.1021/jf048456d
Ahmed, I. A., AlJuhaimi, F. Y., Özcan, M. M., Uslu, N., & Karrar, E. (2024). The role of germination in changes in bioactive properties, polyphenols, and biogenic elements of raw and germinated barley (Hordeum vulgare) parts. International Journal of Food Science & Technology, 59(2), 1044–1053. https://doi.org/10.1111/ijfs.16970
Ah-Reum, H., Min Jeong, H., Bomi, N., Bo-Ram, K., Hyeon Hwa, P., Inwoo, B., … Jin-Baek, K. (2020). Comparison of Flavonoid Profiles in Sprouts of Radiation Breeding Wheat Lines (Triticum aestivum L.). Agronomy, 10(10), 1489. https://doi.org/10.3390/agronomy10101489
Alberdi-Cedeño, J., Martínez-Yusta, A., Ruiz-Aracama, A., Goicoechea-Oses, E., & Nieva-Echevarría, B. (2025). Different effects of tocopherol natural extract on sunflower oil stability under frying and accelerated storage conditions: A comprehensive study on the fate of major and minor components of oil, and added tocopherols. Food Chemistry, 407, 142871. https://doi.org/10.1016/j.foodchem.2025.142871
Al-Khayri, J. M., Sahana, G. R., Nagella, P., Joseph, B. V., Alessa, F. M., & Al-Mssallem, M. Q. (2022). Flavonoids as potential anti-inflammatory molecules: A review. Molecules, 27(9), 2901. https://doi.org/10.3390/molecules27092901
Alvarez-Jubete, L., Wijngaard, H., Arendt, E. K., & Gallagher, E. (2010). Polyphenol composition and in vitro antioxidant activity of amaranth, quinoa, buckwheat and wheat as affected by sprouting and baking. Food Chemistry, 119(2), 770–778. https://doi.org/10.1016/j.foodchem.2009.07.032
Apace Davila, B. (2022). Efecto del germinado en la capacidad antioxidante y compuestos fenólicos del grano del maíz morado (Zea mays L.) Tesis de licenciatura, Universidad Nacional de Huancavelica. Repositorio Institucional Universidad Nacional de Huancavelica. https://hdl.handle.net/20.500.14597/5377
Bartłomiej, S., Justyna, R. K., & Ewa, N. (2012). Bioactive compounds in cereal grains–occurrence, structure, technological significance and nutritional benefits–a review. Food science and technology international, 18(6), 559-568.https://doi.org/10.1177/1082013211433079
Becerril, M. F. Z. (2018). Evaluación de compuestos fenólicos y actividad antioxidante durante la germinación en diferentes variedades de cebada. Tesis de Licenciatura. Universidad Autónoma del Estado de Hidalgo.
http://dgsa.uaeh.edu.mx:8080/bibliotecadigital/handle/231104/4082.
Benincasa, P., Falcinelli, B., Lutts, S., Stagnari, F., & Galieni, A. (2019). Sprouted grains: A comprehensive review. Nutrients, 11(2), 421. https://doi.org/10.3390/nu11020421
Carranco Jáuregui, M. E., Calvo Carrillo, M. de la C., & Pérez-Gil Romo, F. (2011). Carotenoides y su función antioxidante: Revisión. Archivos Latinoamericanos de Nutrición, 61(3), 233–241.
Carrillo, W., Gómez-Ruiz, J. A., Miralles, B., & Recio, I. (2016). Identification of antioxidant peptides of hen egg-white lysozyme and evaluation of inhibition of lipid peroxidation and cytotoxicity in the zebrafish model. European Food Research and Technology, 242, 1777–1785. https://doi.org/10.1007/s00217-016-2677-1
Cevallos-Casals, B. A., & Cisneros-Zevallos, L. (2010). Impact of germination on phenolic content and antioxidant activity of 13 edible seed species. Food Chemistry, 119(4), 1485-1490. https://doi.org/10.1016/j.foodchem.2009.09.030
Charley, H. (2012). Tecnología de Alimentos: Procesos Químicos y Físicos en la Preparación de Alimentos. México D.F, México: Editorial Limusa.
Cheynier, V., Teissedre, P. L., & Terrier, N. (2013). Plant phenolics: Recent advances on their biosynthesis, genetics and ecophysiology. Plant Physiology and Biochemistry, 70, 62–72. https://doi.org/10.1016/j.plaphy.2013.05.009
Chu, C., Du, Y., Yu, X., Shi, J., Yuan, X., Liu, X., ... & Yan, N. (2019). Dynamics of antioxidant activities, metabolites, phenolic acids, flavonoids, and phenolic biosynthetic genes in germinating Chinese wild rice (Zizania latifolia). Food Chemistry, 318, 126483. https://doi.org/10.1016/j.foodchem.2020.126483
Dekkers, M. C. M., Pearce, S. R., & Gillmor, J. B. (2020). An Updated Overview on the Regulation of Seed Germination. Plants, 9(6), 703. https://doi.org/10.3390/plants9060703
Elkhalifa, A. E. O., & Bernhardt, R. (2010). Influence of grain germination on functional properties of sorghum flour. Food Chemistry, 121(2), 387-392. https://doi.org/10.1016/j.foodchem.2009.12.04
Estrada-Reyes, R., Ubaldo-Suárez, D., & Araujo-Escalona, A. G. (2012). Los flavonoides y el sistema nervioso central. Salud mental, 35(5), 375-384.
Fărcaș, A. C., Socaci, S. A., Nemeș, S. A., Pop, O. L., Coldea, T. E., Fogarasi, M., & Biriș-Dorhoi, E. S. (2022). An Update Regarding the Bioactive Compound of Cereal By-Products: Health Benefits and Potential Applications. Nutrients, 14(17), 3470. https://doi.org/10.3390/nu14173470
García-Castro, A., Ortiz, F. A. G., Hernández, G. H., & Román-Gutiérrez, A. D. (2024). Analysis of bioactive compounds in lyophilized aqueous extracts of barley sprouts. Journal of Food Measurement and Characterization, 18, 5327–5338. https://doi.org/10.1007/s11694-024-02569-9
Garzón-Salazar, C., Martín-Domínguez, I., & Caballero-Briones, F. (2020). Sprouted oat: a review on the relationship between processing conditions and chemico-physical properties of flour. Foods, 9(2), 169. https://doi.org/10.3390/foods9020169
Gong, K., Chen, L., Li, X., Sun, L., & Liu, K. (2018). Effects of germination combined with extrusion on the nutritional composition, functional properties and polyphenol profile and related in vitro hypoglycemic effect of whole grain corn. Journal of Cereal Science, 83, 1–8. https://doi.org/10.1016/j.jcs.2018.07.002
Gordo, D. A. M. (2018). Los compuestos fenólicos: un acercamiento a su biosíntesis, síntesis y actividad biológica. Revista de Investigación Agraria y Ambiental, 9(1), 4. https://doi.org/10.22490/21456453.1968
Górniak, I., Bartoszewski, R., & Króliczewski, J. (2019). Comprehensive review of antimicrobial activities of plant flavonoids. Phytochemistry Reviews, 18, 241–272. https://doi.org/10.1007/s11101-018-9591-z
Goufo, P., & Trindade, H. (2014). Rice antioxidants: phenolic acids, flavonoids, anthocyanins, proanthocyanidins, tocopherols, tocotrienols, γ-oryzanol, and phytic acid. Food Science & Nutrition, 2, 75–104. https://doi.org/10.1002/fsn3.86
Guerrero, L., & Calderon, D. (2018). Valoración nutricional y productiva de diferentes granos de cereales germinados Tesis de Licenciatura. Universidad de Nariño. https://sired.udenar.edu.co/8296/1/92599.pdf
Gumus, Z. P., Moulahoum, H., Tok, K., Kocadag Kocazorbaz, E., & Zihnioglu, F. (2023). Activity-guided purification and identification of endogenous bioactive peptides from barley sprouts (Hordeum vulgare L.) with diabetes treatment potential. International Journal of Food Science and Technology, 58(6), 3285-3292. https://doi.org/10.1111/ijfs.16172.
Gunathunga, C., Senanayake, S., Jayasinghe, M. A., Brennan, C. S., Truong, T., Marapana, U., & Chandrapala, J. (2024). Germination effects on nutritional quality: A comprehensive review of selected cereal and pulse changes. Journal of Food Composition and Analysis, 128, 106024. https://doi.org/10.1016/j.jfca.2024.106024
Guzmán-Ortiz, F. A., Castro-Rosas, J., Gómez-Aldapa, C. A., Mora-Escobedo, R., Rojas-León, A., Rodríguez-Marín, M. L., … Román-Gutiérrez, A. D. (2019). Enzyme activity during germination of different cereals: A review. Food Reviews International, 35(3), 177-200. https://doi.org/10.1080/87559129.2018.1514623
Hagos, M. ., Singh Chandravanshi, B. ., Redi-Abshiro , M. ., & Ele Yaya, E. . (2023). Determination of total phenolic, total flavonoid, ascorbic acid contents and antioxidant activity of pumpkin flesh, peel and seeds . Bulletin of the Chemical Society of Ethiopia, 37(5), 1093–1108. https://doi.org/10.4314/bcse.v37i5.3
Hao, Y., Hong, Y., Guo, H., (2022). Hao, Y., Hong, Y., Guo, H., Qin, P., Huang, A., Yang, X., & Ren, G. (2022). Transcriptomic and metabolomic landscape of quinoa during seed germination. BMC Plant Biology, 22(1), 237. https://doi.org/10.1186/s12870-022-03621-w
Hasnat, H., Shompa, S. A., Islam, M. M., Alam, S., Richi, F. T., Emon, N. U., ... & Ahmed, F. (2024). Flavonoids: A treasure house of prospective pharmacological potentials. Heliyon, 10(6). https://doi.org/10.1016/j.heliyon.2024.e25643
Hijlkema, M., Nijsse, J., Hilhorst, H., & Groot, S. P. C. (2011). First off the mark: Early seed germination. Journal of Experimental Botany, 62(10), 3289–3309.https://doi.org/10.1093/jxb/err030
Hwang, I. G., Shin, Y. J., Lee, S., Lee, J., & Yoo, S. M. (2012). Effects of different cooking methods on the antioxidant properties of red pepper (Capsicum annuum L.). Preventive Nutrition and Food Science, 17(4), 286–292. 10.3746/pnf.2012.17.4.286
Islam, M. Z., Shim, M. J., Jeong, S. Y., & Lee, Y. T. (2022). Effects of soaking and sprouting on bioactive compounds of black and red pigmented rice cultivars. International Journal of Food Science and Technology, 57(1), 201-209. https://doi.org/10.1111/ijfs.15105
Jittanit, W., Chaiwut, P., & Srisawat, N. (2010). Drying temperature affects rice seed vigor via gibberellin, abscisic acid, and antioxidant enzymes. Journal of Stored Products Research, 46(4), 207–213. https://doi.org/10.1016/j.jspr.2010.04.003
Jribi, S. , Sahagún, M. , Belorio, M. , Debbabi, H. , & Gomez, M. (2020). Effect of sprouting time on dough and cookies properties. Journal of Food Measurement and Characterization, 14, 1595–1600.
Kang, S. J., Jeong, S. Y., Islam, M. Z., Shin, B. K., Park, Y. J., Kim, J. K., ... & Lee, J. H. (2022). Bioactive compounds and quality evaluation of red-pigmented rice processed by germination and roasting. Foods, 11(18), 2735. https://doi.org/10.3390/foods11182735
Kang, S. J., Lee, J. H., & Kim, Y. S. (2022). Bioactive compounds and quality evaluation of red-pigmented rice during germination. Food Science & Nutrition, 10(6), 2001–2010.https://doi.org/10.3390/foods11182735
Kaur, H., & Gill, B. S. (2021). Changes in physicochemical, nutritional characteristics and ATR–FTIR molecular interactions of cereal grains during germination. Journal of Food Science and Technology, 58(6), 2313-2324. https://doi.org/10.1007/s13197-020-04742-6
Khan, S. (2025). Multi-Enzyme Synergy and Allosteric Regulation in the Shikimate Pathway: Biocatalytic Platforms for Industrial Applications. Catalysts, 15(8), 718.https://doi.org/10.3390/catal15080718
Kim, H. Y., Lee, S. H., Hwang, I. G., Woo, K. S., Kim, K. J., Lee, M. J., Kim, D. J., Kim, T. J., & Lee, J. (2013). Antioxidant and antiproliferation activities of winter cereal crops before and after germination. Food Science and Biotechnology, 22, 181–186. https://doi.org/10.1007/s10068-013-0025-9
Krinsky, N. I., & Johnson, E. J. (2005). Carotenoid actions and their relation to health and disease. Molecular Aspects of Medicine, 26(6), 459–516. https://doi.org/10.1016/j.mam.2005.10.001
Kropff, M., & Morell, M. (2019). The cereals imperative of future food systems – cereals provide around 42% of the total protein in developing countries. International Rice Research Institute. https://www.irri.org/news-and-events/news/cereals-imperative-future-food-systems
Kruma, Z., Kince, T., Galoburda, R., Tomsone, L., Straumite, E., Sabovics, M., Sturite, L., & Kronberga, A. (2019). Influence of germination temperature and time on phenolic content and antioxidant properties of cereals. Baltic Conference on Food Science and Technology 1, 103–108. https://doi.org/10.22616/FoodBalt.2019.002
Ktenioudaki, A., Alvarez-Jubete, L., & Gallagher, E. (2015). A review of the process-induced changes in the phytochemical content of cereal grains: The breadmaking process. Critical Reviews in Food Science and Nutrition, 55(5), 611–619. https://doi.org/10.1080/10408398.2012.667848
Lemmens, E., Moroni, A. V., Pagand, J., Heirbaut, P., Ritala, A., Karlen, Y., & Delcour, J. A. (2019). Impact of cereal seed sprouting on its nutritional and technological properties: A critical review. Comprehensive reviews in food science and food safety, 18(1), 305-328.
Liao, Y., et al. (2024). Flavonoids in natural products for the therapy of liver diseases. Frontiers in Pharmacology. https://doi.org/10.3389/fphar.2024.1485065
Lipko, A., Pączkowski, C., Perez-Fons, L., Fraser, P. D., Kania, M., Hoffman-Sommer, M., Danikiewicz, W., Rohmer, M., Poznański, J., & Swiezewska, E. (2023). Divergent contribution of the MVA and MEP pathways to the formation of polyprenols and dolichols in Arabidopsis thaliana. The Biochemical Journal, 480(8), 495-520. https://doi.org/10.1042/BCJ20220578
Liu, L., Shao, Z., Zhang, M., & Wang, Q. (2015). Regulation of carotenoid metabolism in tomato. Molecular Plant, 8(1), 28–39. https://doi.org/10.1016/j.molp.2014.11.006
Liu, R., Lu, J., Xing, J., Li, X., & Zhang, Y. (2021). Transcriptome and metabolome analyses revealing the potential mechanism of seed germination in Polygonatum cyrtonema. Scientific Reports, 11, 12161. https://doi.org/10.1038/s41598-021-91598-1
Lutts, S., Benincasa, P., Wojtyla, L., Kubala, S., Pace, R., Lechowska, K., Quinet, M., & Garnczarska, M. (2016). Seed Priming: New Comprehensive Approaches for an Old Empirical Technique. InTech Publishers. DOI: 10.5772/64420.
Martín Gordo, D. A. (2018). Los compuestos fenólicos, un acercamiento a su biosíntesis, síntesis y actividad biológica. Revista de Investigación Agraria y Ambiental, 9(1), 81–104. https://doi.org/10.22490/21456453.1968
Meena, VK, Chand, S., Shekhawat., (2025). Advances in plant tocopherol biosynthesis: from pathway elucidation to crop biofortification strategies. Discov. Plants 2 , 9 . https://doi.org/10.1007/s44372-025-00093-8
Mène-Saffrané, L., & DellaPenna, D. (2010). Biosynthesis, regulation and functions of tocochromanols in plants. Plant Physiology and Biochemistry, 48(5), 301–309. https://doi.org/10.1016/j.plaphy.2009.11.004
Mène-Saffrané, L., & Pellaud, S. (2017). Current strategies for vitamin E biofortification of crops. Current Opinion in Biotechnology, 44, 189–197. https://doi.org/10.1016/j.copbio.2017.01.007
Misra, B. B., Mishra, A., & Mohapatra, S. (2012). The flavonoid biosynthesis network in plants. Frontiers in Plant Science, 3, 222. https://doi.org/10.3389/fpls.2012.00222
Mohammadi, M., Nouri, L., & Mortazavian, A. M. (2021). Development of a functional synbiotic beverage fortified with different cereal sprouts and prebiotics. Journal of Food Science and Technology, 58, 1–9.
Mridula, D., & Sharma, M. (2015). Development of non‐dairy probiotic drink utilizing sprouted cereals, legume and soymilk. LWT‐Food Science and Technology, 62(1), 482–487. https://doi.org/10.1016/j.lwt.2014.07.011
Muñoz-Llandes, C., Guzmán-Ortiz, F., & Román-Guitiérrez, A. (2019). Effect of germination on antinutritional compounds of grains and seeds. Types Process Effects, 83-99.
Nignpense, B. E., Francis, N., Blanchard, C., & Santhakumar, A. B. (2021). Bioaccessibility and Bioactivity of Cereal Polyphenols: A Review. Foods, 10, 1595. https://doi.org/10.3390/foods10071595
Niu, Y., Zhang, Q., Wang, J., Li, Y., Wang, X., & Bao, Y. (2022). Vitamin E synthesis and response in plants. Frontiers in plant science, 13, 994058. https://doi.org/10.3389/fpls.2022.994058
Ohanenye, I. C., Tsopmo, A., Ejike, C. E., & Udenigwe, C. C. (2020). Germination as a bioprocess for enhancing the quality and nutritional prospects of legume proteins. Trends in Food Science & Technology, 101, 213-222. https://doi.org/10.1016/j.tifs.2020.05.003
Ozturk, I., Sagdic, O., Hayta, M., & Yetim, H. (2012). Alteration in D-tocopherol, some minerals, and fatty acid contents of wheat through sprouting. Chemistry of Natural Compounds, 47(6), 770–772. https://doi.org/10.1007/s10600-012-0092-9
Pal, P., Singh, N., Kaur, P., Kaur, A., Virdi, A. S., & Parmar, N. (2016). Comparison of composition, protein, pasting, and phenolic compounds of brown rice and germinated brown rice from different cultivars. Cereal Chemistry, 93(6), 584-592. https://doi.org/10.1094/CCHEM-03-16-0066-R
Pérez-Galeano, A., & Zapata Valencia, S. (2015). Evaluación del comportamiento comercial de los germinados y brotes tiernos en la ciudad de Medellín: posibles alternativas de comercialización (Tesis Doctoral, Corporación Universitaria Lasallista). https://repository.unilasallista.edu.co/items/4695d8ee-8a82-46f2-8165-de5320e1155d
Pérez-Gálvez, A., Viera, I., & Roca, M. (2020). Carotenoids and chlorophylls as antioxidants. Antioxidants, 9(6), 505. https://doi.org/10.3390/antiox9060505
Perri, G., Calabrese, F. M., Rizzello, C. G., De Angelis, M., Gobbetti, M., & Calasso, M. (2020). Sprouting process affects the lactic acid bacteria and yeasts of cereal, pseudocereal and legume flours. LWT – Food Science and Technology, 126, Article 109314. https://doi.org/10.1016/j.lwt.2020.109314
Piñuel, L., Vilcacundo, E., Boeri, P., Barrio, D. A., Morales, D., Pinto, A., Morán, R., Samaniego, I., & Carrillo, W. (2019). Extraction of protein concentrate from red bean (Phaseolus vulgaris L.): Antioxidant activity and inhibition of lipid peroxidation. Journal of Applied Pharmaceutical Science, 9(9), 45–58. http://dx.doi.org/10.7324/JAPS.2019.90804
Pujara, A., Chattopadhyay, P., & Ray, R. (2023). Germination affected vitamin E composition of chia: Changes in tocopherol isomers during sprouting. Food Chemistry, 405, 134880. https://doi.org/10.1016/j.foodchem.2023.134880
Riewe, D., Koohi, M., Lisec, J., Pfeiffer, M., Lippmann, R., Schmeichel, J., ... & Altmann, T. (2012). A tyrosine aminotransferase involved in tocopherol synthesis in Arabidopsis. The Plant Journal, 71(5), 850-859.https://doi.org/10.1111/j.1365-313X.2012.05035.x
Roland, W. S. U., van Buren, R. J., Gouka, R. J., Gruppen, H., Driesse, M., & Smit, G. (2013). Bitter taste receptor activation by flavonoids and isoflavonoids: Modeled structural requirements for activation of hTAS2R14 and hTAS2R39. Food Chemistry, 141(2), 1870-1879. https://doi.org/10.1016/j.foodchem.2013.04.083
Roland, W. S. U., van Buren, R. J., Gruppen, H., Driesse, M., Smit, G., & Vincken, J.-P. (2014). 6-Methoxyflavanones as bitter taste receptor blockers for hTAS2R39. PLoS ONE, 9(4), e94451. https://doi.org/10.1371/journal.pone.0094451
Sadiq, M., Akram, N. A., Ashraf, M., Al-Qurainy, F., & Ahmad, P. (2019). Alpha-tocopherol-induced regulation of growth and metabolism in plants under non-stress and stress conditions. Journal of Plant Growth Regulation, 38(4), 1325-1340.. https://doi.org/10.1007/s00344-019-09936-7
Sánchez-López, N., García-Méndez, L., & Torres-Martínez, S. (2023). Imbibition and germination of seeds with economic and ecological interest: Physical and biochemical factors involved. Sustainability, 15(6), 5394. https://doi.org/10.3390/su15065394
Şenlik, A. S., & Alkan, D. (2023). Improving the nutritional quality of cereals and legumes by germination. Czech Journal of Food Sciences, 41(5), 348-357.10.17221/44/2023-CJFS.
Serpen, A., Capuano, E., Fogliano, V., & Gökmen, V. (2007). A new procedure to measure the antioxidant activity of insoluble food components. Journal of Agricultural and Food Chemistry, 55(19), 7676–7681. https://doi.org/10.1021/jf071291z
Shewry, P. R., & Hefferon, K. L. (2020). Grains – a major source of sustainable protein for health. Nutrition Reviews, 80(6), 1648–1661. https://doi.org/10.1093/nutrit/nuab084
Souto, R. N. M., Pinho, J. da S., Peixe, C. L. D., Trindade, M. E. F., Souza, P. G., Silva, P. E., Teixeira-Costa, B. E., Castelo-Branco, V. N., & Teodoro, A. J. (2025). Buriti (Mauritia flexuosa L.f.) and Acuri (Attalea phalerata Mart. ex Spreng) oils as functional lipid sources in bakery products: Bioactive composition, sensory evaluation, and technological performance. Foods, 14(17), 3089.
https://doi.org/10.3390/foods14173089
Souza, R. A. (2016). Efeitos dos polifenóis na microbiota intestinal e na saúde metabólica. Revista Brasileira de Nutrição, 28(3), 45–58.
Sun, T., Xu, Z., Zhang, S., & Zhang, Y. (2022). Plant carotenoids: recent advances and future perspectives. Frontiers in Plant Science, 13, 10515021. https://doi.org/10.3389/fpls.2022.10515021
Terao, J. (2023). Revisiting carotenoids as dietary antioxidants for human health and disease prevention. Food & Function, 14(17), 7799-7824. 10.1039/D3FO02330C
Thakur, M., Singh, K., & Khedkar, R. (2020). Phytochemicals: Extraction process, safety assessment, toxicological evaluations, and regulatory issues. In Functional and preservative properties of phytochemicals (pp. 341-361). Academic Press. https://doi.org/10.1016/B978-0-12-818593-3.00011-7
Tieri, M., Ghelfi, F., Vitale, M., Vetrani, C., Marventano, S., Lafranconi, A., ... & Grosso, G. (2020). Whole grain consumption and human health: an umbrella review of observational studies. International Journal of Food Sciences and Nutrition, 71(6), 668-677. https://doi.org/10.1080/09637486.2020.1715354
Van Hung, P., Hatcher, D. W., & Barker, W. (2011). Phenolic acid composition of sprouted wheats by ultra-performance liquid chromatography (UPLC) and their antioxidant activities. Food chemistry, 126(4), 1896-1901.10.1016/j.foodchem.2010.12.015.
Van Hung, P., Hatcher, D. W., & Barker, W. (2011). Phenolic acid composition of sprouted wheats by ultra-performance liquid chromatography (UPLC) and their antioxidant activities. Food Chemistry, 126(4), 1896–1901. https://doi.org/10.1016/j.foodchem.2010.12.015
VidyaMuthulakshmi M, Srinivasan A, Srivastava S. (2023). Antioxidant green factories: toward sustainable production of vitamin E in plant in vitro cultures. ACS Omega, 8(4), 3586–3605. https://doi.org/10.1021/acsomega.2c05819
Vilcacundo, R., & Hernández-Ledesma, B. (2017). Nutritional and biological value of quinoa (Chenopodium quinoa Willd.). Current Opinion in Food Science, 14, 1–6. https://doi.org/10.1016/j.cofs.2016.11.007
Vogt, T. (2010). Phenylpropanoid biosynthesis. Molecular plant, 3(1), 2-20.
Vranová, E., Coman, D., & Gruissem, W. (2013). Network analysis of the MVA and MEP pathways for isoprenoid synthesis. Annual Review of Plant Biology, 64, 665-700. https://doi.org/10.1146/annurev-arplant-050312-120116
Wang, R., Li, M., Brennan, M. A., Dhital, S., Kulasiri, D., Brennan, C. S., & Guo, B. (2023). Complexation of starch and phenolic compounds during food processing and impacts on the release of phenolic compounds. Comprehensive Reviews in Food Science and Food Safety, 22(4), 3185-3211.10.1111/1541-4337.13180
Weerakoon, W. M. W., Maruyama, A., & Ohba, K. (2008). Impact of humidity on temperature‐induced grain sterility in rice (Oryza sativa L). Journal of Agronomy and Crop Science, 194(2), 135-140. https://doi.org/10.1111/j.1439-037X.2008.00293.x
Xu, L., Zhang, Y., & Zhang, Z. (2017). Changes of the phenolic compounds and antioxidant activities in germinated adlay seeds. Food Research International, 100, 1–7. https://doi.org/10.1002/jsfa.8298
Yamuangmorn, S., & Saenjum, C. (2024). Germination alters the bioactive compounds of pigmented and non-pigmented rice varieties in fresh and year-old stored seeds. Food Chemistry: X, 24, 102005.10.1016/j.fochx.2024.102005
Yaqoob, S., Baba, W. N., Masoodi, F. A., Shafi, M., & Bazaz, R. (2018). Effect of sprouting on cake quality from wheat–barley flour blends. Journal of Food Measurement and Characterization, 12, 1253–1265. https://doi.org/10.1007/s11694-018-9739-y
Yu, J., Gao, Y., Wang, Y., Zhu, J., & Zhang, W. (2020). Seed germination commences with the uptake of water by the dry seed (imbibition), and is completed when the radicle extends to penetrate the structures that surround it. BMC Plant Biology, 20(274). https://doi.org/10.1186/s12870-020-02483-4
Zhang, J., Yang, J., & Yin, Y. (2024). Germination promotes flavonoid accumulation of finger millet (Eleusine coracana L.): Response surface optimization and investigation of accumulation mechanism. Plants, 13(16), 2191. https://doi.org/10.3390/plants13162191
Zhao, J., Li, L., Zhao, C., & Wang, Y. (2017). Phenolic compounds and their biosynthesis in germinated seeds. Comprehensive Reviews in Food Science and Food Safety, 16(3), 489–509. https://doi.org/10.1111/1541-4337.12260
Zhuang, C., Yuan, J., Du, Y., Zeng, J., Sun, Y., Wu, Y., Gao, X.-H., & Chen, H.-D. (2022). Effects of oral carotenoids on oxidative stress: A systematic review and meta-analysis of studies in the recent 20 years. Frontiers in Nutrition, 9, 754707. https://doi.org/10.3389/fnut.2022.754707
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2025 Fabiola Araceli Guzmán Ortiz, Karyme Jareth Reyna Olvera, Ciro Baruchs Muñoz Llandes

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.










