Pesticidas organofosforados: revisión de su equilibrio agrícola-medioambiental, control y remediación.
DOI:
https://doi.org/10.29057/icbi.v13iEspecial4.15975Palabras clave:
Pesticidas organofosforados, biorremediación, cuantificación, remoción, Límites Máximos ResidualesResumen
Los plaguicidas organofosforados (OPPs) son compuestos derivados del ácido fosforamídico, ácido fosfónico o ácido fosfórico que se emplean para el control de plagas, especialmente como insecticidas en la producción de varios productos básicos. Sin embargo, durante más de 50 años, los OPPs se han aplicado de manera irresponsable, causando efectos adversos en la salud humana y la calidad del medio ambiente. En este estudio, se llevó a cabo una revisión bibliográfica de la situación de los OPPs entre 2021 y 2025, teniendo en cuenta artículos de investigación, reseñas, libros, actas de conferencias y otros recursos en línea, dando prioridad a la información toxicológica, las normas legales de límites máximos de residuos (LMR), la eliminación y la biorremediación, así como las técnicas para la detección y cuantificación de los OPPs. Algunos plaguicidas, como el malatión, el paratión, el fosmet y el diazinón, son ejemplos de OPPs que siguen utilizándose en la producción de alimentos, causando resistencia de las plagas y daños ecológicos. Es importante aplicar una combinación de prácticas, que incluyan la eliminación, la biorremediación, la detección y la cuantificación de los OPPs, para lograr un desarrollo sostenible en la producción de alimentos.
Descargas
Información de Publicación
Perfiles de revisores N/D
Declaraciones del autor
Indexado en
- Sociedad académica
- N/D
Citas
Ajiboye, T. O., Oladoye, P. O., Olanrewaju, C. A., & Akinsola, G. O. (2022). Organophosphorus pesticides: Impacts, detection and removal strategies. Environmental Nanotechnology, Monitoring & Management, 17, 100655. DOI: https://doi.org/10.1016/j.enmm.2022.100655
Allawi, M. H., & AL-Mukhtar, R. S. (2024). Review and comparison for organophosphorus pesticide elimination processes. In AIP Conference Proceedings (Vol. 3009, No. 1). AIP Publishing. DOI: https://doi.org/10.1063/5.0190820
Al-Rajhi, A. M., Saddiq, A. A., Ismail, K. S., Abdelghany, T. M., Mohammad, A. M., & Selim, S. (2024). White rot fungi to decompose organophosphorus insecticides and their relation to soil microbial load and ligninolytic enzymes. BioResources, 19(4), 946. DOI: https://doi.org/10.15376/biores.19.4.9468-9476
Al-Rajhi, A. M., Saddiq, A. A., Ismail, K. S., Abdelghany, T. M., Mohammad, A. M., & Selim, S. (2024). White rot fungi to decompose organophosphorus insecticides and their relation to soil microbial load and ligninolytic enzymes. BioResources, 19(4), 946. DOI: https://doi.org/10.15376/biores.19.4.9468-9476
Aroniadou-Anderjaska, V., Figueiredo, T. H., de Araujo Furtado, M., Pidoplichko, V. I., & Braga, M. F. (2023). Mechanisms of organophosphate toxicity and the role of acetylcholinesterase inhibition. Toxics, 11(10), 866. DOI: https://doi.org/10.3390/toxics11100866
Azizi, A., Shahhoseini, F., Langille, E. A., Akhoondi, R., & Bottaro, C. S. (2021). Micro-gel thin film molecularly imprinted polymer coating for extraction of organophosphorus pesticides from water and beverage samples. Analytica Chimica Acta, 1187, 339135. DOI: https://doi.org/10.1016/j.aca.2021.339135
Bokade, P., Gaur, V. K., Tripathi, V., Bobate, S., Manickam, N., & Bajaj, A. (2023). Bacterial remediation of pesticide polluted soils: Exploring the feasibility of site restoration. Journal of Hazardous Materials, 441, 129906. DOI: https://doi.org/10.1016/j.jhazmat.2022.129906
Bose, S., Kumar, P. S., & Vo, D. V. N. (2021). A review on the microbial degradation of chlorpyrifos and its metabolite TCP. Chemosphere, 283, 131447. DOI: https://doi.org/10.1016/j.chemosphere.2021.131447
Caño, J. G., Bareche, J. O., Justribó, M. T., & Rabés, J. D. (2007). Intoxicación por organofosforados. SEMERGEN-Medicina de Familia, 33(1), 21-23. DOI: 10.1016/S1138-3593(07)73839-X
Caño, J. G., Bareche, J. O., Justribó, M. T., & Rabés, J. D. (2007). Intoxicación por organofosforados. SEMERGEN-Medicina de Familia, 33(1), 21-23. DOI: 10.1016/S1138-3593(07)73839-X
Caramello, C. S., Cowper-Coles, F., Domitrovic, H. A., Jorge, M. J., & Jorge, L. C. (2025). Análisis de los efectos genotóxicos del malatión en Rhamdia quelen mediante el test de micronúcleos. Brazilian Journal of Animal and Environmental Research, 8(1), e78270-e78270. DOI: https://doi.org/10.34188/bjaerv8n1-135
Chen, Q., Sun, Y., Liu, S., Zhang, J., Zhang, C., Jiang, H., ... & Zhang, K. (2021). Colorimetric and fluorescent sensors for detection of nerve agents and organophosphorus pesticides. Sensors and Actuators B: Chemical, 344, 130278. DOI: https://doi.org/10.1016/j.snb.2021.130278 https://doi.org/10.1016/j.snb.2021.130278
Codex Alimentarius, International Food Standards. (2004). Pesticides Database Search, 49-Malathion. Retrieved May 23, 2025 from https://www.fao.org/fao-who-codexalimentarius/codex-texts/dbs/pestres/pesticide-detail/es/?p_id=49
Codex Alimentarius, International Food Standards. (2005). Pesticides Database Search, 59-Parathion-Methyl. Retrieved May 23, 2025 from https://www.fao.org/fao-who-codexalimentarius/codex-texts/dbs/pestres/pesticide-detail/ru/?p_id=59
Codex Alimentarius, International Food Standards. (2015). Pesticides Database Search, 103-Phosmet. Retrieved May 23, 2025 from https://www.fao.org/fao-who-codexalimentarius/codex-texts/dbs/pestres/pesticide-detail/fr/?p_id=103
Codex Alimentarius, International Food Standards. (2023). Request for comments at Step 3 on the recommendations of the Joint FAO/WHO Meeting on Pesticide Residues (JMPR) (2022), Acceptable daily intakes, acute reference doses, recommended maximum residue levels, supervised trials median residue values and other values recorded by the 2022 JMPR meeting, Diazinon. Retrieved May 23, 2025 from https://www.fao.org/fao-who-codexalimentarius/sh-proxy/es/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FCircular%252520Letters%252FCL%2525202023-22%252Fcl23_22s.pdf
Codex Alimentarius, International Food Standards. (2025). Maximum Residue Limits (MRL). Retrieved May 23, 2025 from https://www.fao.org/fao-who-codexalimentarius/codex-texts/maximum-residue-limits/en/
COFEPRIS, Consultation of Sanitary Registrations of Pesticides, Plant Nutrients and MRLs, Retrieved May 23, 2025 from https://siipris03.cofepris.gob.mx/Resoluciones/Consultas/ConWebRegPlaguicida.asp
Edwards, F. L., & Tchounwou, P. B. (2005). Environmental toxicology and health effects associated with methyl parathion exposure–a scientific review. International Journal of Environmental Research and Public Health, 2(3), 430-441. DOI: https://doi.org/10.3390/ijerph2005030007
Elias, M. A., Siegloch, A. E., & Agostinetto, L. (2022). Intoxicação aguda por agrotóxicos organofosforados: uma revisão integrativa. Research, Society and Development, 11(9), e11611931606-e11611931606. DOI: https://doi.org/10.33448/rsd-v11i9.31606
Espinoza Navarro, O. R. (2003). Efecto del insecticida organofosforado malatión sobre el aparato reproductor de la lombriz de tierra eisenia foetida como especie biocentinela.
Freyre, E. O., Valencia, A. T., Guzmán, D. D., Maldonado, I. C., Ledezma, L. E. B., Carrillo, M. F., & Escorza, M. A. Q.
(2021). Oxidative stress as a molecular mechanism of exposure to organophosphorus pesticides: a review. Current Protein and Peptide Science, 22(12), 890-897. DOI: https://doi.org/10.2174/1389203722666211122092309
Fu, H., Tan, P., Wang, R., Li, S., Liu, H., Yang, Y., & Wu, Z. (2022). Advances in organophosphorus pesticides pollution: Current status and challenges in ecotoxicological, sustainable agriculture, and degradation strategies. Journal of Hazardous Materials, 424, 127494. DOI: https://doi.org/10.1016/j.jhazmat.2021.127494
Ganie, S. Y., Javaid, D., Hajam, Y. A., & Reshi, M. S. (2022). Mechanisms and treatment strategies of organophosphate pesticide induced neurotoxicity in humans: A critical appraisal. Toxicology, 472, 153181. DOI: https://doi.org/10.1016/j.tox.2022.153181
Gbadamosi, M. R., Abdallah, M. A. E., & Harrad, S. (2021). A critical review of human exposure to organophosphate esters with a focus on dietary intake. Science of the Total Environment, 771, 144752. DOI: https://doi.org/10.1016/j.scitotenv.2020.144752
Gbadamosi, Muideen Remilekun, Mohamed Abou-Elwafa Abdallah, and Stuart Harrad. "A critical review of human exposure to organophosphate esters with a focus on dietary intake." Science of the Total Environment 771 (2021): 144752. DOI: https://doi.org/10.1016/j.scitotenv.2020.144752
Ghorbani, M., Mohammadi, P., Keshavarzi, M., Saghi, M. H., Mohammadi, M., Shams, A., & Aghamohammadhasan, M. (2021). Simultaneous determination of organophosphorus pesticides residues in vegetable, fruit juice, and milk samples with magnetic dispersive micro solid-phase extraction and chromatographic method; recruitment of simplex lattice mixture design for optimization of novel sorbent composites. Analytica Chimica Acta, 1178, 338802. DOI: https://doi.org/10.1016/j.aca.2021.338802
Grillo Pizarro, Á., Achú Peralta, E., Muñoz-Quezada, M. T., & Lucero Mondaca, B. (2018). Exposición a plaguicidas organofosforados y polineuropatía periférica en trabajadores de la región del Maule, Chile [Exposure to organophosphate pesticides and peripheral polyneuropathy in workers from Maule Region, Chile]. Revista espanola de salud publica, 92, e201803006.
Khosropour, H., Kalambate, P. K., Kalambate, R. P., Permpoka, K., Zhou, X., Chen, G. Y., & Laiwattanapaisal, W. (2022). A comprehensive review on electrochemical and optical aptasensors for organophosphorus pesticides. Microchimica Acta, 189(9), 362. https://doi.org/10.1007/s00604-022-05399-y
Lian, L., Jiang, B., Xing, Y., & Zhang, N. (2021). Identification of photodegradation product of organophosphorus pesticides and elucidation of transformation mechanism under simulated sunlight irradiation. Ecotoxicology and Environmental Safety, 224, 112655. DOI: https://doi.org/10.1016/j.ecoenv.2021.112655
Lista de Productos Autorizados. Fresa. En cumplimiento con Estados Unidos (2021). Asociación Nacional de Exportadores de Berries (ANEBERRIES A. C.).
List of Authorised Products. Strawberry. In compliance with the United States (2021). National Association of Berry Exporters (ANEBERRIES A. C.).
Liu, R., Yi, G., Ji, B., Liu, X., Gui, Y., Xia, Z., & Fu, Q. (2022). Metal–Organic Frameworks-Based Immobilized Enzyme Microreactors Integrated with Capillary Electrochromatography for High-Efficiency Enzyme Assay. Analytical Chemistry, 94(17), 6540-6547. DOI: https://doi.org/10.1021/acs.analchem.1c05586
Meng, L. W., Chen, M. L., Yuan, G. R., Zheng, L. S., Dou, W., Peng, Y., ... & Wang, J. J. (2023). An antenna-abundant glutathione S-transferase BdGSTd8 participates in detoxification of two organophosphorus insecticides in Bactrocera dorsalis (Hendel). Journal of Agricultural and Food Chemistry, 71(22), 8400-8412. DOI: https://doi.org/10.1021/acs.jafc.3c01563
National Center for Biotechnology Information (2025). PubChem Compound Summary for CID 4004, Malathion. Retrieved May 23, 2025 from https://pubchem.ncbi.nlm.nih.gov/compound/Malathion.
Ponce, G., Cantú, P. C., Flores, A., Badii, M., Zapata, R., López, B., & Fernández, I. (2006). Modo de acción de los insecticidas. Revista salud pública y nutrición, 7(4).
Ponce, G., Cantú, P. C., Flores, A., Badii, M., Zapata, R., López, B., & Fernández, I. (2006). Modo de acción de los insecticidas. Revista salud pública y nutrición, 7(4).
Prathiksha, J., Narasimhamurthy, R. K., Dsouza, H. S., & Mumbrekar, K. D. (2023). Organophosphate pesticide-induced toxicity through DNA damage and DNA repair mechanisms. Molecular Biology Reports, 50(6), 5465-5479. DOI: https://doi.org/10.1007/s11033-023-08424-2
Sarlak, Z., Khosravi-Darani, K., Rouhi, M., Garavand, F., Mohammadi, R., & Sobhiyeh, M. R. (2021). Bioremediation of organophosphorus pesticides in contaminated foodstuffs using probiotics. Food Control, 126, 108006. DOI: https://doi.org/10.1016/j.foodcont.2021.108006
Sharma, A. K., Gaur, K., Tiwari, R. K., & Gaur, M. S. (2011). Computational interaction analysis of organophosphorus pesticides with different metabolic proteins in humans. Journal of biomedical research, 25(5), 335–347. https://doi.org/10.1016/S1674-8301(11)60045-6
Sigma-Aldrich; Safety Data Sheet for Malathion. Product Number: 36143, Version 5.4 (Revision Date 22/05/2025). Available from, as of June 1, 2016: https://www.sigmaaldrich.com/safety-center.html
Singh, A., Singh, A., Singh, A., Singh, P., Singh, V., Singh, Y., ... & Chauhan, A. (2023). Chemistry, Metabolism and Neurotoxicity of Organophosphorus Insecticides: A Review. Nature Environment & Pollution Technology, 22(4).
Singh, B. K., & Walker, A. (2006). Microbial degradation of organophosphorus compounds. FEMS microbiology reviews, 30(3), 428-471. DOI: https://doi.org/10.1111/j.1574-6976.2006.00018.x
Soltani, S., Sereshti, H., & Nouri, N. (2021). Deep eutectic solvent-based clean-up/vortex-assisted emulsification liquid-liquid microextraction: Application for multi-residue analysis of 16 pesticides in olive oils. Talanta, 225, 121983. DOI: https://doi.org/10.1016/j.talanta.2020.121983
Tanveer, S., Ilyas, N., Akhtar, N., Akhtar, N., Bostan, N., Hasnain, Z., ... & Fitriatin, B. N. (2024). Unlocking the interaction of organophosphorus pesticide residues with ecosystem: Toxicity and bioremediation. Environmental research, 249, 118291. DOI: https://doi.org/10.1016/j.envres.2024.118291
Timofeeva, O. A., Sanders, D., Seemann, K., Yang, L., Hermanson, D., Regenbogen, S., Agoos, S., Kallepalli, A., Rastogi, A., Braddy, D., Wells, C., Perraut, C., Seidler, F. J., Slotkin, T. A., & Levin, E. D. (2008). Persistent behavioral alterations in rats neonatally exposed to low doses of the organophosphate pesticide, parathion. Brain research bulletin, 77(6), 404–411. https://doi.org/10.1016/j.brainresbull.2008.08.019
Venkatesan, T., Chethan, B. R., & Mani, M. (2022). Insecticide resistance and its management in the insect pests of horticultural crops. Trends in horticultural entomology, 455-490. DOI: https://doi.org/10.1007/978-981-19-0343-4_14
Wang, X., Yu, H., Li, Q., Tian, Y., Gao, X., Zhang, W., ... & Li, F. (2024). Development of a fluorescent sensor based on TPE-Fc and GSH-AuNCs for the detection of organophosphorus pesticide residues in vegetables. Food Chemistry, 431, 137067. DOI: https://doi.org/10.1016/j.foodchem.2023.137067
Yadav, A. (2021). In vitro studies on the modulatory effects of nutraceuticals and gene polymorphisms on organophosphate pesticide-induced genotoxicity as analyzed by the comet assay. International Journal on Nutraceuticals, Functional Foods and Novel Foods. DOI: http://doi.org/10.17470/NF-016-1028-2
Zhou, C., Feng, J., Tian, Y., Wu, Y., He, Q., Li, G., & Liu, J. (2023). Non-enzymatic electrochemical sensors based on nanomaterials for detection of organophosphorus pesticide residues. Environmental Science: Advances, 2(7), 933-956. DOI: https://doi.org/10.1039/D3VA00045A
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2025 Zianya Gómez Soto, Carlos Ángel Jijón, Otilio Arturo Acevedo Sandoval, Eduardo Cornejo Velázquez, María Aurora Veloz Rodríguez, Rosa Angeles Vázquez García

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.










