Efecto de la relación Al2O3/TiO2 en la degradación fotocatalítica de azul de metileno
DOI:
https://doi.org/10.29057/icbi.v13iEspecial4.16064Palabras clave:
Sol-Gel, Fotocatálisis heterogénea, Luz visible, Azul de metilenoResumen
En el presente, se explora el efecto que tiene la relación molar Al2O3:TiO2 en las propiedades fisicoquímicas y ópticas del sistema (Al2O3)xTiO2 sintetizado por la técnica sol-gel con x=0, 0.5, 0.75 y 1.0, y en la eficiencia para degradar azul de metileno (AM) por fotocatálisis heterogénea. Por DRX se identificó la estructura rutilo para el TIO2 (x=0) y en el sistema (Al2O3)xTiO2, se identificaron las estructuras anatasa y α-alúmina para el TiO2 y Al2O3 respectivamente. La proporción x=0.75 mostró la mejor eficiencia de fotodegradación del AM, 43.5% en 6 h, al ser la única muestra que absorbe en el rango visible de 400 a 650 nm, y presenta baja aglomeración de partículas esféricas con distribución media de tamaño de 0.25 μm (~250 nm). La degradación del AM empleando TiO2, (Al2O3)0.5TiO2 y (Al2O3)TiO2 fue de 11.4%, 22.8% y 24.9% respectivamente.
Descargas
Información de Publicación
Perfiles de revisores N/D
Declaraciones del autor
Indexado en
- Sociedad académica
- N/D
Citas
Ahmad, I. Z. (2023). Semiconductor photocatalysts: A critical review highlighting the various strategies to boost the photocatalytic performances for diverse applications,. Advances in Colloid and Interface Science, 311, 102830. doi:10.1016/j.cis.2022.102830
Ahmed, S. R. (2011). Advances in heterogeneous photocatalytic degradation of Phenols and dyes in wastewater: A Review. Water Air Soil Pollution, 215, 3-29. doi:10.1007/s11270-010-0456-3
Akkaya Arıer, U. T. (2014). Influence of Al2O3:TiO2 ratio on the structural and optical properties of TiO2–Al2O3 nano-composite films produced by sol gel method. Composites Part B: Engineering, 58, 147-151. doi:https://doi.org/10.1016/j.compositesb.2013.10.023
Al Miad, A. P. (2024). Metal oxide-based photocatalysts for the efficient degradation of organic pollutants for a sustainable environment: a review. Nanoscale Advances, 6(19), 4781-4803. doi:10.1039/d4na00517a
Barcelo, D. P. (2005). Emerging Organic Pollutants in Waste Waters and Sludge (Water Pollution). Barcelona, España: Springer.
Behpour, M. A. (2012). Study of the photocatalytic activity of nanocrystalline S, N-codoped TiO2 thin films and powders under visible and sun light irradiation. Applied SurfaceScience, 258, 6595-601. doi:10.1016/j.apsusc.2012.03.085
Beltrán Nishizaki, E. (2022, 09 06). El aga y sus obras, tema de seguridad nacional. Heraldo de México, p. 22. Retrieved 12 02, 2022, from
heraldodemexico.com.mx
Bertrán, J., & Núñez, J. (2002). Química Física (vol. 2). Barcelona: Ariel Ciencia.
Byrne, C. S. (2018). Recent advances in photocatalysis for environmental applications. Journal of Environmental Chemical Engineering, 6(3), 3531-3555. doi:10.1016/j.jece.2017.07.080
Chairungsri, W. S. (2022). Direct dye wastewater photocatalysis using immobi-lized titanium dioxide on fixed substrate. . Chemosphere, 268, 131762. doi:10.1016/j.chemosphere.2021.131762.
Chen, D. C. (2020). Photocatalytic degradation of organic pollutants using TiO2-based photocatalysts: A review. Juornal of Cleaner Production, 268, 121725. doi:10.1016/j.jclepro.2020.121725
Chen, Y. L. (2021). In-situ Preparation of CdS/TiO2 Heterojunction Based on MOFs-Derived TiO2 with Improved Photocatalytic Performance. Journal of Physics: Conference Series, International Conference on Advanced Materials and Ecological Environment, 2168, 012017.
Dewil, R. M. (2017). New perspectives for advanced oxidation processes. Journal Enviromental
Managment, 195, 93-99. doi:10.1016/j.jenvman.2017.04.010
Dhameliya KB, A. C. (2023). Assessment of Wastewater Contaminants Caused by Textile Industries. . Journal of Pure and Applied Microbiology, 17(3), 1477-1485. doi:https://doi.org/10.22207/JPAM.17.3.09
Diebold, U. (2003). The surface science of titanium dioxide. Surface Science Reports, 48(5-8), 53-229. doi:https://doi.org/10.1016/S0167-5729(02)00100-0.
Farhadian-Azizi, K. B.-M. (2013). Transition from anatase to rutile phase in titanium dioxide (TiO2) nanoparticles synthesized by complexing sol–gel process: effect of kind of complexing agent and calcinating temperature. Journal of Sol-Gel Science and Technology, 65, 329–335. doi:10.1007/s10971-012-2940-2
Filatova, E. O. (2015). Interpretation of the hanging the Band Gap of Al2O3 depending on its crysralline form: Connection with different local symmetries. The Journal of Physica Chemistry, 119(35), 20755-20761. doi:10.1021/acs.jpcc.5b06843
Fu, W. ,. (2020). Exceptionally thermal-stable Al2O3/TiO2 nanofibers by depressing surface-initiated grain growth as new supports for anti-sintering Pt nanoparticles. Materials Today Nano, 11, 100088. doi:10.1016/j.mtnano.2020.100088
Grzmil, B. ,. (2013). Study of the anatase to rutile transformation kinetics of the modified TiO2. Polish Journal of Chemical Technology, 15(2), 73–80. doi:10.2478/pjct-2013-0026
Huang, Z. Z. (2020). Experimental method to explore the adaptation degree of type-II and all-solid-state Z-scheme heterojunction structures in the same degradation system. China Journal Catalysis, 41, 1522-1534. doi:10.1016/S1872-2067(19)63495-9
Karunakaran, C. A. (2010). Cu-doped TiO2 nanoparticles for photocatalytic disinfection of bacteria under visible light. Journal of Colloid and Interface Science, 352, 68-74. doi:10.1016/j.jcis.2010.08.012.
Khan, A. K. (2020). Application of advanced oxidation processes followed by different treatment technologies for hospital wastewater treatment. Journal of Cleaner production, 269, 122411. doi:10.1016/j.jclepro.2020.122411.
Krishnan, A. S. (2024). A review on transition metal oxides based photocatalysts for degradation of synthetic organic pollutants. Journal of Environmental Sciences, 139, 389-417. doi:10.1016/j.jes.2023.02.051
Kumar, R. Q.-A. (2022). A review on emerging water contaminants and the application of sustainable removal technologies. Case Studies in Chemical and Environmental Engineering, 6, 100219. doi:10.1016/j.cscee.2022.100219
Kusumlata, A. B. (2024). Sustainable Solutions: Reviewing the Future of Textile Dye Contaminant Removal with Emerging Biological Treatments. Limnological Review, 24(2), 126-149. doi:https://doi.org/10.3390/limnolrev24020007
Lin, J. Y. (2023). Environmental impacts and remediation of dye-containing wastewater. Nature Reviews Earth & Environment, 4, 785–803.
doi:10.1038/s43017-023-00489-8
Liu X, W. Y. (2023). Preparation and Corrosion Properties of TiO2-SiO2-Al2O3 Composite Coating on Q235 Carbon Steel. Coatings. Coatings, 13(12), 1994. doi:10.3390/coatings13121994
López, R. (2017). Gaceta UNAM. (D. G. Social, Ed.) Retrieved from México experimenta escasez de agua y falta de equidad en su distribución: https://www.gaceta.unam.mx/mexico-experimenta-escasez-de-agua-y-falta-de-equidad-en-su-distribucion/
Martinez-Gómez, C. R.-V. (2022). Photodegradation and Mineralization of Phenol Using TiO2 Coated γ-Al2O3: Effect of Thermic Treatment. Processes, 10, 1186. doi:10.3390/pr10061186.
Monali P., I. D. (2022). Advanced oxidation processes: Performance, advantages, and scale-up of emerging technologies. Journal of Environmental Management, 316, 115295. doi:10.1016/j.jenvman.2022.115295
Noticias ONU. (2021, 10 29). Retrieved 02 04, 2024, from La Conferencia sobre el Cambio Climático COP26: https://news.un.org/es/story/2021/10/1499162
Ossai, I. A. (2020). Remediation of soil and water contaminated with petroleum hydrocarbon: a review. Environmental Technology & Innovation, 17(1), 100526. doi:10.1016/j.eti.2019.100526
Ren Y, Z. L. (2019). Effect of Al2O3–SiO2–MnO inclusions on precipitation of MnS in Si–Mn-killed 304 stainless steels. Ironmaking & Steelmaking: Processes, Products and Applications, 46(6), 558-563. doi:10.1080/03019233.2018.1491170
Sadeq, Z. M. (2019). Low cost, fast and powerful performance interfacial charge transfer nanostructured Al2O3 capturing of light
photocatalyst eco-friendly system using hydrothermal method. Materials Letters, 254, 120-124. doi:10.1016/j.matlet.2019.07.050
Sharpe, S. (2023, 04 19). Maychola. Retrieved from Azul de metileno: https://maychola.com/azul-de-metileno/
Suresh-Kumar, M. S. (2018). Treatment of ternary dye wastewater by hydrodynamic cavitation combined with other advanced oxidation processes (AOP’s). Journal of Water Process Engineering, 23, 250-256. doi:10.1016/j.jwpe.2018.04.004
Wang, J. W. (2020). Reactive species in advanced oxidation processes: Formation, identification and reaction mechanism. Chemical Engineering Journal,401, 126158. doi:10.1016/j.cej.2020.126158
Wang, Z. H. (2015). Preparation and Characterization of Highly Flexible Al2O3/Al/Al2O3 Hybrid Composite. Journal of Nanomaterials, 2015, 412071. doi:10.1155/2015/412071
Wawrzyniak, B. M. (2016). Solar-light-induced photocatalytic decomposition of two azo dyes on new TiO2 photo-catalyst containing nitrogen. Applied Catalyst B Enviromental, 62, 150-158. doi:10.1016/j.apcatb.2005.07.008
Xu, L. S. (2012). Facile synthesis of nano-crystalline alpha-alumina at low temperature via an absolute ethanol sol–gel strategy. Materials Chemistry and Physics, 132(2-3), 1071-1076. doi:10.1016/j.matchemphys.2011.12.069
Zhang, H. B. (2000). Structural Characteristics and Mechanical and Thermodynamic Properties of TiO2 Polymorphs. Journal of Materials Research, 15(2), 437-448.
Zhang, Q. L. (2016). The dependence of photocatalytic activity on the selective and nonselective deposition of noble metal co-catalysts on the facets of rutile TiO2. Journal of Catalysis, 337, 36-44. doi:10.1016/j.jcat.2016.01.001
Zhu, L. L. (2017). Ligand-free rutile and anatase TiO2 nanocrystals as electron extraction layers for high performance inverted polymer solar cells. RSC Advances, 33, 20084-20092. doi:10.1039/c7ra00134g
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2025 Mónica Araceli Camacho González, Irina Lijanova Victorovna, Alberto Hernández Reyes, Carlos Alfredo Zamora Valencia, Nikté Yoliztli Martínez Palma, Brayan Javier Lorenzano Hernández

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.










