Efecto de la relación Al2O3/TiO2 en la degradación fotocatalítica de azul de metileno

Autores/as

DOI:

https://doi.org/10.29057/icbi.v13iEspecial4.16064

Palabras clave:

Sol-Gel, Fotocatálisis heterogénea, Luz visible, Azul de metileno

Resumen

En el presente, se explora el efecto que tiene la relación molar Al2O3:TiO2 en las propiedades fisicoquímicas y ópticas del sistema (Al2O3)xTiO2 sintetizado por la técnica sol-gel con x=0, 0.5, 0.75 y 1.0, y en la eficiencia para degradar azul de metileno (AM) por fotocatálisis heterogénea. Por DRX se identificó la estructura rutilo para el TIO2 (x=0) y en el sistema (Al2O3)xTiO2, se identificaron las estructuras anatasa y α-alúmina para el TiO2 y Al2O3 respectivamente. La proporción x=0.75 mostró la mejor eficiencia de fotodegradación del AM, 43.5% en 6 h, al ser la única muestra que absorbe en el rango visible de 400 a 650 nm, y presenta baja aglomeración de partículas esféricas con distribución media de tamaño de 0.25 μm (~250 nm). La degradación del AM empleando TiO2, (Al2O3)0.5TiO2 y (Al2O3)TiO2 fue de 11.4%, 22.8% y 24.9% respectivamente.

Descargas

Los datos de descargas todavía no están disponibles.

Información de Publicación

Metric
Este artículo
Otros artículos
Revisores por pares 
2.4 promedio

Perfiles de revisores  N/D

Declaraciones del autor

Declaraciones del autor
Este artículo
Otros artículos
Disponibilidad de datos 
N/A
16%
Financiamiento externo 
No
32% con financiadores
Intereses conflictivos 
N/D
11%
Metric
Para esta revista
Otras revistas
Artículos aceptados 
88%
33%
Días hasta la publicación 
81
145

Indexado en

Editor y comité editorial
perfiles
Sociedad académica 
N/D

Citas

Ahmad, I. Z. (2023). Semiconductor photocatalysts: A critical review highlighting the various strategies to boost the photocatalytic performances for diverse applications,. Advances in Colloid and Interface Science, 311, 102830. doi:10.1016/j.cis.2022.102830

Ahmed, S. R. (2011). Advances in heterogeneous photocatalytic degradation of Phenols and dyes in wastewater: A Review. Water Air Soil Pollution, 215, 3-29. doi:10.1007/s11270-010-0456-3

Akkaya Arıer, U. T. (2014). Influence of Al2O3:TiO2 ratio on the structural and optical properties of TiO2–Al2O3 nano-composite films produced by sol gel method. Composites Part B: Engineering, 58, 147-151. doi:https://doi.org/10.1016/j.compositesb.2013.10.023

Al Miad, A. P. (2024). Metal oxide-based photocatalysts for the efficient degradation of organic pollutants for a sustainable environment: a review. Nanoscale Advances, 6(19), 4781-4803. doi:10.1039/d4na00517a

Barcelo, D. P. (2005). Emerging Organic Pollutants in Waste Waters and Sludge (Water Pollution). Barcelona, España: Springer.

Behpour, M. A. (2012). Study of the photocatalytic activity of nanocrystalline S, N-codoped TiO2 thin films and powders under visible and sun light irradiation. Applied SurfaceScience, 258, 6595-601. doi:10.1016/j.apsusc.2012.03.085

Beltrán Nishizaki, E. (2022, 09 06). El aga y sus obras, tema de seguridad nacional. Heraldo de México, p. 22. Retrieved 12 02, 2022, from

heraldodemexico.com.mx

Bertrán, J., & Núñez, J. (2002). Química Física (vol. 2). Barcelona: Ariel Ciencia.

Byrne, C. S. (2018). Recent advances in photocatalysis for environmental applications. Journal of Environmental Chemical Engineering, 6(3), 3531-3555. doi:10.1016/j.jece.2017.07.080

Chairungsri, W. S. (2022). Direct dye wastewater photocatalysis using immobi-lized titanium dioxide on fixed substrate. . Chemosphere, 268, 131762. doi:10.1016/j.chemosphere.2021.131762.

Chen, D. C. (2020). Photocatalytic degradation of organic pollutants using TiO2-based photocatalysts: A review. Juornal of Cleaner Production, 268, 121725. doi:10.1016/j.jclepro.2020.121725

Chen, Y. L. (2021). In-situ Preparation of CdS/TiO2 Heterojunction Based on MOFs-Derived TiO2 with Improved Photocatalytic Performance. Journal of Physics: Conference Series, International Conference on Advanced Materials and Ecological Environment, 2168, 012017.

Dewil, R. M. (2017). New perspectives for advanced oxidation processes. Journal Enviromental

Managment, 195, 93-99. doi:10.1016/j.jenvman.2017.04.010

Dhameliya KB, A. C. (2023). Assessment of Wastewater Contaminants Caused by Textile Industries. . Journal of Pure and Applied Microbiology, 17(3), 1477-1485. doi:https://doi.org/10.22207/JPAM.17.3.09

Diebold, U. (2003). The surface science of titanium dioxide. Surface Science Reports, 48(5-8), 53-229. doi:https://doi.org/10.1016/S0167-5729(02)00100-0.

Farhadian-Azizi, K. B.-M. (2013). Transition from anatase to rutile phase in titanium dioxide (TiO2) nanoparticles synthesized by complexing sol–gel process: effect of kind of complexing agent and calcinating temperature. Journal of Sol-Gel Science and Technology, 65, 329–335. doi:10.1007/s10971-012-2940-2

Filatova, E. O. (2015). Interpretation of the hanging the Band Gap of Al2O3 depending on its crysralline form: Connection with different local symmetries. The Journal of Physica Chemistry, 119(35), 20755-20761. doi:10.1021/acs.jpcc.5b06843

Fu, W. ,. (2020). Exceptionally thermal-stable Al2O3/TiO2 nanofibers by depressing surface-initiated grain growth as new supports for anti-sintering Pt nanoparticles. Materials Today Nano, 11, 100088. doi:10.1016/j.mtnano.2020.100088

Grzmil, B. ,. (2013). Study of the anatase to rutile transformation kinetics of the modified TiO2. Polish Journal of Chemical Technology, 15(2), 73–80. doi:10.2478/pjct-2013-0026

Huang, Z. Z. (2020). Experimental method to explore the adaptation degree of type-II and all-solid-state Z-scheme heterojunction structures in the same degradation system. China Journal Catalysis, 41, 1522-1534. doi:10.1016/S1872-2067(19)63495-9

Karunakaran, C. A. (2010). Cu-doped TiO2 nanoparticles for photocatalytic disinfection of bacteria under visible light. Journal of Colloid and Interface Science, 352, 68-74. doi:10.1016/j.jcis.2010.08.012.

Khan, A. K. (2020). Application of advanced oxidation processes followed by different treatment technologies for hospital wastewater treatment. Journal of Cleaner production, 269, 122411. doi:10.1016/j.jclepro.2020.122411.

Krishnan, A. S. (2024). A review on transition metal oxides based photocatalysts for degradation of synthetic organic pollutants. Journal of Environmental Sciences, 139, 389-417. doi:10.1016/j.jes.2023.02.051

Kumar, R. Q.-A. (2022). A review on emerging water contaminants and the application of sustainable removal technologies. Case Studies in Chemical and Environmental Engineering, 6, 100219. doi:10.1016/j.cscee.2022.100219

Kusumlata, A. B. (2024). Sustainable Solutions: Reviewing the Future of Textile Dye Contaminant Removal with Emerging Biological Treatments. Limnological Review, 24(2), 126-149. doi:https://doi.org/10.3390/limnolrev24020007

Lin, J. Y. (2023). Environmental impacts and remediation of dye-containing wastewater. Nature Reviews Earth & Environment, 4, 785–803.

doi:10.1038/s43017-023-00489-8

Liu X, W. Y. (2023). Preparation and Corrosion Properties of TiO2-SiO2-Al2O3 Composite Coating on Q235 Carbon Steel. Coatings. Coatings, 13(12), 1994. doi:10.3390/coatings13121994

López, R. (2017). Gaceta UNAM. (D. G. Social, Ed.) Retrieved from México experimenta escasez de agua y falta de equidad en su distribución: https://www.gaceta.unam.mx/mexico-experimenta-escasez-de-agua-y-falta-de-equidad-en-su-distribucion/

Martinez-Gómez, C. R.-V. (2022). Photodegradation and Mineralization of Phenol Using TiO2 Coated γ-Al2O3: Effect of Thermic Treatment. Processes, 10, 1186. doi:10.3390/pr10061186.

Monali P., I. D. (2022). Advanced oxidation processes: Performance, advantages, and scale-up of emerging technologies. Journal of Environmental Management, 316, 115295. doi:10.1016/j.jenvman.2022.115295

Noticias ONU. (2021, 10 29). Retrieved 02 04, 2024, from La Conferencia sobre el Cambio Climático COP26: https://news.un.org/es/story/2021/10/1499162

Ossai, I. A. (2020). Remediation of soil and water contaminated with petroleum hydrocarbon: a review. Environmental Technology & Innovation, 17(1), 100526. doi:10.1016/j.eti.2019.100526

Ren Y, Z. L. (2019). Effect of Al2O3–SiO2–MnO inclusions on precipitation of MnS in Si–Mn-killed 304 stainless steels. Ironmaking & Steelmaking: Processes, Products and Applications, 46(6), 558-563. doi:10.1080/03019233.2018.1491170

Sadeq, Z. M. (2019). Low cost, fast and powerful performance interfacial charge transfer nanostructured Al2O3 capturing of light

photocatalyst eco-friendly system using hydrothermal method. Materials Letters, 254, 120-124. doi:10.1016/j.matlet.2019.07.050

Sharpe, S. (2023, 04 19). Maychola. Retrieved from Azul de metileno: https://maychola.com/azul-de-metileno/

Suresh-Kumar, M. S. (2018). Treatment of ternary dye wastewater by hydrodynamic cavitation combined with other advanced oxidation processes (AOP’s). Journal of Water Process Engineering, 23, 250-256. doi:10.1016/j.jwpe.2018.04.004

Wang, J. W. (2020). Reactive species in advanced oxidation processes: Formation, identification and reaction mechanism. Chemical Engineering Journal,401, 126158. doi:10.1016/j.cej.2020.126158

Wang, Z. H. (2015). Preparation and Characterization of Highly Flexible Al2O3/Al/Al2O3 Hybrid Composite. Journal of Nanomaterials, 2015, 412071. doi:10.1155/2015/412071

Wawrzyniak, B. M. (2016). Solar-light-induced photocatalytic decomposition of two azo dyes on new TiO2 photo-catalyst containing nitrogen. Applied Catalyst B Enviromental, 62, 150-158. doi:10.1016/j.apcatb.2005.07.008

Xu, L. S. (2012). Facile synthesis of nano-crystalline alpha-alumina at low temperature via an absolute ethanol sol–gel strategy. Materials Chemistry and Physics, 132(2-3), 1071-1076. doi:10.1016/j.matchemphys.2011.12.069

Zhang, H. B. (2000). Structural Characteristics and Mechanical and Thermodynamic Properties of TiO2 Polymorphs. Journal of Materials Research, 15(2), 437-448.

Zhang, Q. L. (2016). The dependence of photocatalytic activity on the selective and nonselective deposition of noble metal co-catalysts on the facets of rutile TiO2. Journal of Catalysis, 337, 36-44. doi:10.1016/j.jcat.2016.01.001

Zhu, L. L. (2017). Ligand-free rutile and anatase TiO2 nanocrystals as electron extraction layers for high performance inverted polymer solar cells. RSC Advances, 33, 20084-20092. doi:10.1039/c7ra00134g

Descargas

Publicado

2025-12-12

Cómo citar

Camacho González, M. A., Lijanova Victorovna, I., Hernández Reyes, A., Zamora Valencia, C. A., Martínez Palma, N. Y., & Lorenzano Hernández, B. J. (2025). Efecto de la relación Al2O3/TiO2 en la degradación fotocatalítica de azul de metileno. Pädi Boletín Científico De Ciencias Básicas E Ingenierías Del ICBI, 13(Especial4), 162–171. https://doi.org/10.29057/icbi.v13iEspecial4.16064

Número

Sección

Artículos de investigación