Borofeno desde la simulación a la aplicación, una perspectiva teórica
DOI:
https://doi.org/10.29057/icbi.v13iEspecial4.16072Palabras clave:
borofeno, materiales 2D, propiedades electrónicas, almacenamiento de energía, DFTBResumen
El borofeno, miembro más reciente de los materiales bidimensionales (2D), representa uno de los descubrimientos más prometedores de la ciencia de los materiales. Este material de boro presenta una estructura y propiedades electrónicas excepcionales que podrían superar al grafeno: metalicidad intrínseca, alta movilidad electrónica, notable conductividad térmica y polimorfismo estructural. Desde su síntesis experimental en 2015, ha mostrado un gran potencial en aplicaciones relacionadas con almacenamiento y gestión de energía, catálisis, biomedicina y electrónica de alto desempeño. Esta revisión presenta una visión integral a los métodos de simulación aplicables al borofeno, explicando desde fundamentos teóricos hasta los métodos computacionales que han acelerado su estudio. Finalmente, se exploran las aplicaciones que pueden resultar prometedoras y las perspectivas futuras de este material revolucionario.
Descargas
Información de Publicación
Perfiles de revisores N/D
Declaraciones del autor
Indexado en
- Sociedad académica
- N/D
Citas
Abbasi, R., & Faez, R. (2023). DFT-Based Tight-binding model of vdW bilayer χ3 and β12 borophene. Materials Chemistry and Physics, 307, 128136. https://doi.org/10.1016/j.matchemphys.2023.128136
Adekoya, G. J., Adekoya, O. C., Muloiwa, M., Sadiku, E. R., Kupolati, W. K., & Hamam, Y. (2024). Advances in borophene: synthesis, tunable properties, and energy storage applications. Small, 20(40), 2403656. https://doi.org/10.1002/smll.202403656
Anju, R, S., & Shiju, N. R. (2025). On the 10th anniversary of borophene: Birth, growth and status quo. Materials Today, (Vol. 88). https://doi.org/10.1016/j.mattod.2025.03.028
Aswathi, K. P., & Baskaran, N. (2023). First-principles study of beryllium substituted borophene as an anode material for Li/Na-ion batteries. Computational Condensed Matter, 37, e00845. https://doi.org/10.1016/j.cocom.2023.e00845
Casanova-Chafer, J., & Bittencourt, C. (2025). Straightforward Synthesis of Borophene Nanolayers for Enhanced NO2 Detection in Humid Environments. ACS Applied Electronic Materials, 7(6), 2305–2312. https://doi.org/10.1021/acsaelm.4c02003
Chowdhury, S., Majumdar, A., & Jana, D. (2019). Electronic and optical properties of the supercell of 8-Pmmn borophene modified on doping by H, Li, Be, and C: a DFT approach. Applied Physics A, 125(5). https://doi.org/10.1007/s00339-019-2649-y
Chung, J.-Y., Yuan, Y., Mishra, T. P., Joseph, C., Canepa, P., Ranjan, P., Sadki, E. H. S., Gradečak, S., & Garaj, S. (2024). Structure and exfoliation mechanism of two-dimensional boron nanosheets. Nature Communications, 15(1). https://doi.org/10.1038/s41467-024-49974-8
Feng, B., Zhang, J., Zhong, Q., Li, W., Li, S., Li, H., Cheng, P., Meng, S., Chen, L., & Wu, K. (2016). Experimental realization of two-dimensional boron sheets. Nature Chemistry, 8(6), 563–568. https://doi.org/10.1038/nchem.2491
Frenzel, J., Oliveira, A. F., Duarte, H. A., Heine, T., & Seifert, G. (2005). Structural and Electronic Properties of Bulk Gibbsite and Gibbsite Surfaces. Zeitschrift Für Anorganische Und Allgemeine Chemie, 631(6–7), 1267–1271. https://doi.org/10.1002/zaac.200500051
Goto, T., Ito, S., Shinde, S. L., Ishibiki, R., Hikita, Y., Matsuda, I., Hamada, I., Hosono, H., & Kondo, T. (2022). Carbon dioxide adsorption and conversion to methane and ethane on hydrogen boride sheets. Communications Chemistry, 5(1). https://doi.org/10.1038/s42004-022-00739-8
Grundkötter-Stock, B., Bezugly, V., Kunstmann, J., Cuniberti, G., Frauenheim, T., & Niehaus, T. A. (2012). SCC-DFTB parametrization for boron and boranes. Journal of Chemical Theory and Computation, 8(3), 1153–1163. https://doi.org/10.1021/ct200722n
Han, J.-W., Bian, W.-Y., Zhang, Y.-Y., & Zhang, M. (2022). Fe@χ3-borophene as a promising catalyst for CO oxidation reaction: A first-principles study. Frontiers in Chemistry, 10. https://doi.org/10.3389/fchem.2022.1008332
Horri, A., & Faez, R. (2019). Tight‐binding model for the electronic properties of buckled triangular borophene. Micro & Nano Letters, 14(9), 992–994. https://doi.org/10.1049/mnl.2019.0023
Hou, C., Tai, G., Hao, J., Sheng, L., Liu, B., & Wu, Z. (2020). Ultrastable Crystalline Semiconducting Hydrogenated Borophene. Angewandte Chemie International Edition, 59(27), 10819–10825. https://doi.org/10.1002/anie.202001045
Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14(1), 33–38. https://doi.org/10.1016/0263-7855(96)00018-5
Jiang, H. R., Shyy, W., Liu, M., Ren, Y. X., & Zhao, T. S. (2018). Borophene and defective borophene as potential anchoring materials for lithium–sulfur batteries: a first-principles study. Journal of Materials Chemistry A, 6(5), 2107–2114. https://doi.org/10.1039/c7ta09244j
Kolosov, D. A., & Glukhova, O. E. (2025). Single-walled and multi-walled boron nanotubes: Novel DFTB parameterization and electrical conductivity calculations. Solid State Communications, 403, 115984. https://doi.org/10.1016/j.ssc.2025.115984
Koskinen, P., & Mäkinen, V. (2009). Density-functional tight-binding for beginners. Computational Materials Science, 47(1), 237–253. https://doi.org/10.1016/j.commatsci.2009.07.013
Koskinen, P., Häkkinen, H., Seifert, G., Sanna, S., Frauenheim, T., & Moseler, M. (2006). Density-functional based tight-binding study of small gold clusters. New Journal of Physics, 8, 9–9. https://doi.org/10.1088/1367-2630/8/1/009
Kumar, P., Singh, G., Bahadur, R., Li, Z., Zhang, X., Sathish, C. I., Benzigar, M. R., Kim Anh Tran, T., Padmanabhan, N. T., Radhakrishnan, S., Janardhanan, J. C., Ann Biji, C., Jini Mathews, A., John, H., Tavakkoli, E., Murugavel, R., Roy, S., Ajayan, P. M., & Vinu, A. (2024). The rise of borophene. Progress in Materials Science, 146, 101331. https://doi.org/10.1016/j.pmatsci.2024.101331
Liu, C., Dai, Z., Zhang, J., Jin, Y., Li, D., & Sun, C. (2018). Two-Dimensional Boron Sheets as Metal-Free Catalysts for Hydrogen Evolution Reaction. The Journal of Physical Chemistry C, 122(33), 19051–19055. https://doi.org/10.1021/acs.jpcc.8b05859
Mannix, A. J., Zhou, X.-F., Kiraly, B., Wood, J. D., Alducin, D., Myers, B. D., Liu, X., Fisher, B. L., Santiago, U., Guest, J. R., Yacaman, M. J., Ponce, A., Oganov, A. R., Hersam, M. C., & Guisinger, N. P. (2015). Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs. Science, 350(6267), 1513–1516. https://doi.org/10.1126/science.aad1080
Momma, K. and Izumi, F. (2008), VESTA: a three-dimensional visualization system for electronic and structural analysis. J. Appl. Cryst., 41: 653-658. https://doi.org/10.1107/S0021889808012016
Nakhaee, M., Ketabi, S. A., & Peeters, F. M. (2018). Tight-binding model for borophene and borophane. Physical Review B, 97(12). https://doi.org/10.1103/PhysRevB.97.125424
Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva, I. V., & Firsov, A. A. (2004). Electric Field Effect in Atomically Thin Carbon Films. Science, 306(5696), 666–669. https://doi.org/10.1126/science.1102896
Ou, M., Wang, X., Yu, L., Liu, C., Tao, W., Ji, X., & Mei, L. (2021). The emergence and evolution of borophene. Advanced Science, 8(12), 2001801. https://doi.org/10.1002/advs.202001801
Pal, P., & Nandi, M. (2024). Recent Advances in Syntheses and Emerging Applications of 2D Borophene based Nanomaterials with a Focus on Supercapacitors. Dalton Transactions. https://doi.org/10.1039/D4DT02573C
Piazza, Z. A., Hu, H.-S., Li, W.-L., Zhao, Y.-F., Li, J., & Wang, L.-S. (2014). Planar hexagonal B36 as a potential basis for extended single-atom layer boron sheets. Nature Communications, 5(1). https://doi.org/10.1038/ncomms4113
Saad, A., Liu, D., Wu, Y., Song, Z., Li, Y., Najam, T., Zong, K., Tsiakaras, P., & Cai, X. (2021). Ag nanoparticles modified crumpled borophene supported Co3O4 catalyst showing superior oxygen evolution reaction (OER) performance. Applied Catalysis B: Environmental, 298, 120529. https://doi.org/10.1016/j.apcatb.2021.120529
Shang, J., Ma, Y., Gu, Y., & Kou, L. (2018). Two dimensional boron nanosheets: synthesis, properties and applications. Physical Chemistry Chemical Physics, 20(46), 28964–28978. https://doi.org/10.1039/c8cp04850a
Tai, G., Xu, M., Hou, C., Liu, R., Liang, X., & Wu, Z. (2021). Borophene Nanosheets as High-Efficiency Catalysts for the Hydrogen Evolution Reaction. ACS Applied Materials & Interfaces, 13(51), 60987–60994. https://doi.org/10.1021/acsami.1c15953
Tang, H., & Ismail-Beigi, S. (2007). Novel Precursors for Boron Nanotubes: The Competition of Two-Center and Three-Center Bonding in Boron Sheets. Physical review letters, 99(11), 115501. https://doi.org/10.1103/PhysRevLett.99.115501
Ukkola, E. (2020). Modeling of borophene with density-functional tight-binding, Master's Thesis, University of Jyväskylä,, https://jyx.jyu.fi/bitstreams/f408a7b5-66d5-4ead-9b75-8d5e3e7a0cb2/download
Wang, L.-S. (2016). Photoelectron spectroscopy of size-selected boron clusters: from planar structures to borophenes and borospherenes. International Reviews in Physical Chemistry, 35(1), 69–142. https://doi.org/10.1080/0144235x.2016.1147816
Wang, Z. M. (2014). MoS2: Materials, physics, and devices. Springer. https://doi.org/10.1007/978-3-319-02850-7
Wang, Z. Q., Lü, T. Y., Wang, H. Q., Feng, Y. P., & Zheng, J. C. (2019). Review of borophene and its potential applications. Frontiers of Physics, 14(3), 33403. https://doi.org/10.1007/s11467-019-0884-5
Zhai, H.-J., Kiran, B., Li, J., & Wang, L.-S. (2003). Hydrocarbon analogues of boron clusters — planarity, aromaticity and antiaromaticity. Nature Materials, 2(12), 827–833. https://doi.org/10.1038/nmat1012
Zhan, C., Zhang, P., Dai, S., & Jiang, D. (2016). Boron Supercapacitors. ACS Energy Letters, 1(6), 1241–1246. https://doi.org/10.1021/acsenergylett.6b00483
Zhang, F., She, L., Jia, C., He, X., Li, Q., Sun, J., Lei, Z., & Liu, Z.-H. (2020). Few-layer and large flake size borophene: preparation with solvothermal-assisted liquid phase exfoliation. RSC Advances, 10(46), 27532–27537. https://doi.org/10.1039/d0ra03492d
Zhu, L., & Zhang, T. (2018). Optimized tight binding parameters for single layer honeycomb borophene. Solid State Communications, 282, 50–54. https://doi.org/10.1016/j.ssc.2018.08.003
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2025 Luis Angel Zarate-Hernández, Rosa Luz Camacho Mendoza, Emanuel Adolfo Ramírez-Paredes, Carlos Zepactonal Gómez-Castro, José Manuel Vásquez-Pérez, Julián Cruz Borbolla

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.










