Borofeno desde la simulación a la aplicación, una perspectiva teórica

Autores/as

DOI:

https://doi.org/10.29057/icbi.v13iEspecial4.16072

Palabras clave:

borofeno, materiales 2D, propiedades electrónicas, almacenamiento de energía, DFTB

Resumen

El borofeno, miembro más reciente de los materiales bidimensionales (2D), representa uno de los descubrimientos más prometedores de la ciencia de los materiales. Este material de boro presenta una estructura y propiedades electrónicas excepcionales que podrían superar al grafeno: metalicidad intrínseca, alta movilidad electrónica, notable conductividad térmica y polimorfismo estructural. Desde su síntesis experimental en 2015, ha mostrado un gran potencial en aplicaciones relacionadas con almacenamiento y gestión de energía, catálisis, biomedicina y electrónica de alto desempeño. Esta revisión presenta una visión integral a los métodos de simulación aplicables al borofeno, explicando desde fundamentos teóricos hasta los métodos computacionales que han acelerado su estudio. Finalmente, se exploran las aplicaciones que pueden resultar prometedoras y las perspectivas futuras de este material revolucionario.

Descargas

Los datos de descargas todavía no están disponibles.

Información de Publicación

Metric
Este artículo
Otros artículos
Revisores por pares 
2.4 promedio

Perfiles de revisores  N/D

Declaraciones del autor

Declaraciones del autor
Este artículo
Otros artículos
Disponibilidad de datos 
N/A
16%
Financiamiento externo 
No
32% con financiadores
Intereses conflictivos 
N/D
11%
Metric
Para esta revista
Otras revistas
Artículos aceptados 
88%
33%
Días hasta la publicación 
81
145

Indexado en

Editor y comité editorial
perfiles
Sociedad académica 
N/D

Citas

Abbasi, R., & Faez, R. (2023). DFT-Based Tight-binding model of vdW bilayer χ3 and β12 borophene. Materials Chemistry and Physics, 307, 128136. https://doi.org/10.1016/j.matchemphys.2023.128136

Adekoya, G. J., Adekoya, O. C., Muloiwa, M., Sadiku, E. R., Kupolati, W. K., & Hamam, Y. (2024). Advances in borophene: synthesis, tunable properties, and energy storage applications. Small, 20(40), 2403656. https://doi.org/10.1002/smll.202403656

Anju, R, S., & Shiju, N. R. (2025). On the 10th anniversary of borophene: Birth, growth and status quo. Materials Today, (Vol. 88). https://doi.org/10.1016/j.mattod.2025.03.028

Aswathi, K. P., & Baskaran, N. (2023). First-principles study of beryllium substituted borophene as an anode material for Li/Na-ion batteries. Computational Condensed Matter, 37, e00845. https://doi.org/10.1016/j.cocom.2023.e00845

Casanova-Chafer, J., & Bittencourt, C. (2025). Straightforward Synthesis of Borophene Nanolayers for Enhanced NO2 Detection in Humid Environments. ACS Applied Electronic Materials, 7(6), 2305–2312. https://doi.org/10.1021/acsaelm.4c02003

Chowdhury, S., Majumdar, A., & Jana, D. (2019). Electronic and optical properties of the supercell of 8-Pmmn borophene modified on doping by H, Li, Be, and C: a DFT approach. Applied Physics A, 125(5). https://doi.org/10.1007/s00339-019-2649-y

Chung, J.-Y., Yuan, Y., Mishra, T. P., Joseph, C., Canepa, P., Ranjan, P., Sadki, E. H. S., Gradečak, S., & Garaj, S. (2024). Structure and exfoliation mechanism of two-dimensional boron nanosheets. Nature Communications, 15(1). https://doi.org/10.1038/s41467-024-49974-8

Feng, B., Zhang, J., Zhong, Q., Li, W., Li, S., Li, H., Cheng, P., Meng, S., Chen, L., & Wu, K. (2016). Experimental realization of two-dimensional boron sheets. Nature Chemistry, 8(6), 563–568. https://doi.org/10.1038/nchem.2491

Frenzel, J., Oliveira, A. F., Duarte, H. A., Heine, T., & Seifert, G. (2005). Structural and Electronic Properties of Bulk Gibbsite and Gibbsite Surfaces. Zeitschrift Für Anorganische Und Allgemeine Chemie, 631(6–7), 1267–1271. https://doi.org/10.1002/zaac.200500051

Goto, T., Ito, S., Shinde, S. L., Ishibiki, R., Hikita, Y., Matsuda, I., Hamada, I., Hosono, H., & Kondo, T. (2022). Carbon dioxide adsorption and conversion to methane and ethane on hydrogen boride sheets. Communications Chemistry, 5(1). https://doi.org/10.1038/s42004-022-00739-8

Grundkötter-Stock, B., Bezugly, V., Kunstmann, J., Cuniberti, G., Frauenheim, T., & Niehaus, T. A. (2012). SCC-DFTB parametrization for boron and boranes. Journal of Chemical Theory and Computation, 8(3), 1153–1163. https://doi.org/10.1021/ct200722n

Han, J.-W., Bian, W.-Y., Zhang, Y.-Y., & Zhang, M. (2022). Fe@χ3-borophene as a promising catalyst for CO oxidation reaction: A first-principles study. Frontiers in Chemistry, 10. https://doi.org/10.3389/fchem.2022.1008332

Horri, A., & Faez, R. (2019). Tight‐binding model for the electronic properties of buckled triangular borophene. Micro & Nano Letters, 14(9), 992–994. https://doi.org/10.1049/mnl.2019.0023

Hou, C., Tai, G., Hao, J., Sheng, L., Liu, B., & Wu, Z. (2020). Ultrastable Crystalline Semiconducting Hydrogenated Borophene. Angewandte Chemie International Edition, 59(27), 10819–10825. https://doi.org/10.1002/anie.202001045

Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14(1), 33–38. https://doi.org/10.1016/0263-7855(96)00018-5

Jiang, H. R., Shyy, W., Liu, M., Ren, Y. X., & Zhao, T. S. (2018). Borophene and defective borophene as potential anchoring materials for lithium–sulfur batteries: a first-principles study. Journal of Materials Chemistry A, 6(5), 2107–2114. https://doi.org/10.1039/c7ta09244j

Kolosov, D. A., & Glukhova, O. E. (2025). Single-walled and multi-walled boron nanotubes: Novel DFTB parameterization and electrical conductivity calculations. Solid State Communications, 403, 115984. https://doi.org/10.1016/j.ssc.2025.115984

Koskinen, P., & Mäkinen, V. (2009). Density-functional tight-binding for beginners. Computational Materials Science, 47(1), 237–253. https://doi.org/10.1016/j.commatsci.2009.07.013

Koskinen, P., Häkkinen, H., Seifert, G., Sanna, S., Frauenheim, T., & Moseler, M. (2006). Density-functional based tight-binding study of small gold clusters. New Journal of Physics, 8, 9–9. https://doi.org/10.1088/1367-2630/8/1/009

Kumar, P., Singh, G., Bahadur, R., Li, Z., Zhang, X., Sathish, C. I., Benzigar, M. R., Kim Anh Tran, T., Padmanabhan, N. T., Radhakrishnan, S., Janardhanan, J. C., Ann Biji, C., Jini Mathews, A., John, H., Tavakkoli, E., Murugavel, R., Roy, S., Ajayan, P. M., & Vinu, A. (2024). The rise of borophene. Progress in Materials Science, 146, 101331. https://doi.org/10.1016/j.pmatsci.2024.101331

Liu, C., Dai, Z., Zhang, J., Jin, Y., Li, D., & Sun, C. (2018). Two-Dimensional Boron Sheets as Metal-Free Catalysts for Hydrogen Evolution Reaction. The Journal of Physical Chemistry C, 122(33), 19051–19055. https://doi.org/10.1021/acs.jpcc.8b05859

Mannix, A. J., Zhou, X.-F., Kiraly, B., Wood, J. D., Alducin, D., Myers, B. D., Liu, X., Fisher, B. L., Santiago, U., Guest, J. R., Yacaman, M. J., Ponce, A., Oganov, A. R., Hersam, M. C., & Guisinger, N. P. (2015). Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs. Science, 350(6267), 1513–1516. https://doi.org/10.1126/science.aad1080

Momma, K. and Izumi, F. (2008), VESTA: a three-dimensional visualization system for electronic and structural analysis. J. Appl. Cryst., 41: 653-658. https://doi.org/10.1107/S0021889808012016

Nakhaee, M., Ketabi, S. A., & Peeters, F. M. (2018). Tight-binding model for borophene and borophane. Physical Review B, 97(12). https://doi.org/10.1103/PhysRevB.97.125424

Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva, I. V., & Firsov, A. A. (2004). Electric Field Effect in Atomically Thin Carbon Films. Science, 306(5696), 666–669. https://doi.org/10.1126/science.1102896

Ou, M., Wang, X., Yu, L., Liu, C., Tao, W., Ji, X., & Mei, L. (2021). The emergence and evolution of borophene. Advanced Science, 8(12), 2001801. https://doi.org/10.1002/advs.202001801

Pal, P., & Nandi, M. (2024). Recent Advances in Syntheses and Emerging Applications of 2D Borophene based Nanomaterials with a Focus on Supercapacitors. Dalton Transactions. https://doi.org/10.1039/D4DT02573C

Piazza, Z. A., Hu, H.-S., Li, W.-L., Zhao, Y.-F., Li, J., & Wang, L.-S. (2014). Planar hexagonal B36 as a potential basis for extended single-atom layer boron sheets. Nature Communications, 5(1). https://doi.org/10.1038/ncomms4113

Saad, A., Liu, D., Wu, Y., Song, Z., Li, Y., Najam, T., Zong, K., Tsiakaras, P., & Cai, X. (2021). Ag nanoparticles modified crumpled borophene supported Co3O4 catalyst showing superior oxygen evolution reaction (OER) performance. Applied Catalysis B: Environmental, 298, 120529. https://doi.org/10.1016/j.apcatb.2021.120529

Shang, J., Ma, Y., Gu, Y., & Kou, L. (2018). Two dimensional boron nanosheets: synthesis, properties and applications. Physical Chemistry Chemical Physics, 20(46), 28964–28978. https://doi.org/10.1039/c8cp04850a

Tai, G., Xu, M., Hou, C., Liu, R., Liang, X., & Wu, Z. (2021). Borophene Nanosheets as High-Efficiency Catalysts for the Hydrogen Evolution Reaction. ACS Applied Materials & Interfaces, 13(51), 60987–60994. https://doi.org/10.1021/acsami.1c15953

Tang, H., & Ismail-Beigi, S. (2007). Novel Precursors for Boron Nanotubes: The Competition of Two-Center and Three-Center Bonding in Boron Sheets. Physical review letters, 99(11), 115501. https://doi.org/10.1103/PhysRevLett.99.115501

Ukkola, E. (2020). Modeling of borophene with density-functional tight-binding, Master's Thesis, University of Jyväskylä,, https://jyx.jyu.fi/bitstreams/f408a7b5-66d5-4ead-9b75-8d5e3e7a0cb2/download

Wang, L.-S. (2016). Photoelectron spectroscopy of size-selected boron clusters: from planar structures to borophenes and borospherenes. International Reviews in Physical Chemistry, 35(1), 69–142. https://doi.org/10.1080/0144235x.2016.1147816

Wang, Z. M. (2014). MoS2: Materials, physics, and devices. Springer. https://doi.org/10.1007/978-3-319-02850-7

Wang, Z. Q., Lü, T. Y., Wang, H. Q., Feng, Y. P., & Zheng, J. C. (2019). Review of borophene and its potential applications. Frontiers of Physics, 14(3), 33403. https://doi.org/10.1007/s11467-019-0884-5

Zhai, H.-J., Kiran, B., Li, J., & Wang, L.-S. (2003). Hydrocarbon analogues of boron clusters — planarity, aromaticity and antiaromaticity. Nature Materials, 2(12), 827–833. https://doi.org/10.1038/nmat1012

Zhan, C., Zhang, P., Dai, S., & Jiang, D. (2016). Boron Supercapacitors. ACS Energy Letters, 1(6), 1241–1246. https://doi.org/10.1021/acsenergylett.6b00483

Zhang, F., She, L., Jia, C., He, X., Li, Q., Sun, J., Lei, Z., & Liu, Z.-H. (2020). Few-layer and large flake size borophene: preparation with solvothermal-assisted liquid phase exfoliation. RSC Advances, 10(46), 27532–27537. https://doi.org/10.1039/d0ra03492d

Zhu, L., & Zhang, T. (2018). Optimized tight binding parameters for single layer honeycomb borophene. Solid State Communications, 282, 50–54. https://doi.org/10.1016/j.ssc.2018.08.003

Descargas

Publicado

2025-12-12

Cómo citar

Zarate-Hernández, L. A., Camacho Mendoza, R. L., Ramírez-Paredes, E. A., Gómez-Castro, C. Z., Vásquez-Pérez, J. M., & Cruz Borbolla, J. (2025). Borofeno desde la simulación a la aplicación, una perspectiva teórica. Pädi Boletín Científico De Ciencias Básicas E Ingenierías Del ICBI, 13(Especial4), 53–60. https://doi.org/10.29057/icbi.v13iEspecial4.16072

Número

Sección

Artículos de investigación