Avances en la síntesis de Tioureas y su importancia Biológica
Resumen
Las tioureas son compuestos orgánicos cuya síntesis y reactividad ha sido extensamente estudiada en muchos campos de la química, debido a las diversas aplicaciones biológicas y medicinales que estos compuestos poseen. Los métodos más comunes para sintetizar tioureas involucran reactivos como el tiofosgeno, con alto grado de toxicidad, o los isotiocianatos que son difíciles de preparar, pero además se requieren condiciones drásticas de reacción para algunas veces obtener productos con bajos rendimientos. Por lo que cada día se buscan nuevas alternativas en la síntesis de tioureas que permitan obtenerlas de manera rápida, económica y que además se minimice el uso de condiciones drásticas de reacción, catalizadores y disolventes que sean inflamables y contaminen el medio ambiente.
Descargas
Citas
Alonzo, A. J., Hess, T.A., Darbenzio, R. B., & Sewter, J.C., 1993. Effects of intracoronary cromakalim, pinacidil, or diltiazem on cesium chloride-induced arrhythmias in anesthetized dogs under conditions of controlled coronary blood flow. J. Cardiovascular Pharmacol. 21, 677-683.
Antzelevitch, C., & Burashnikov, A., 2017. Overview of basic mechanisms of cardiac arrhythmia. Card. Electrophysiol. Clin. 3 (1), 23-45.
Azizi, N., Khaheh-Amiri, A., Ghafuri, H., Bolourtchian, M., 2011. Toward a practical and waste-free synthesis of thioureas in water. Mol Divers 15, 157–161.
Buu-Hoï, P., 1954. The selection of drugs for chemoterapy research in leprosy. Internat. J. Leprosy 22 (1), 16-21.
Buu-Hoï, P., Xuong, D., & Nam, H., 1955. N,N´-Diarylthioureas and related compounds of potential biological interest. J. Chem. Soc. 1573–1581.
Cantrell, A. S., Hengelhardt, P., Högberg, M., Jaskunas, S. R., & Johansson, N. G., 1996. Phenethylthiazolylthiourea (PETT) Compounds as a New Class of HIV-1 Reverse Transcriptase Inhibitors. 2. Synthesis and Further Structure-Activity Relationship Studies of PETT Analogs. J. Med. Chem. 39, 4261-4274.
Chalina, E. G., & Chakarova, L., 1998. Synthesis, hypotensive and antiarrhythmic activities of 3-alkyl-l-(2-hydroxy-5,8-dimethoxy-l,2,3,4-tetrahydro-3 naphthalenyl)ureas or thioureas and their guanidine analogues. Eur. J. Med. Chem. 33, 975-983
Chinchilla, R., Nájera, C., & Sánchez-Agulló, P., 1994. Enantiomerically Pure Guanidine-Catalysed: Asymmetric Nitroaldol Reaction. Tetrahedron: Asymmetry 5 (7), 1393-1402.
Churchyard, G., Kim, P., Shah, N.S., Rustomjee, R., Gandhi, N., Mathema, B., Dowdy, D., Kasmar, A., & Cardenas, V., 2017. What We Know About Tuberculosis Transmission: An Overview. Int. J. Infect. Dis. 216, 629-635.
Cunha S., Macedo, F. C., Costa, G., Rodrigues, M. T., Verde, R. B., Vencato, I., & Lariucci, C., 2007. Antimicrobial activity and structural study of disubstituted thiourea derivative. Monatash Chem. 138, 511–516.
Doub, L., Richardson, L. M., Herbst, D. R., Black, M. L., Stevenson, O. L., Bambas, L. L., Youmans, G. P., & Youmans, A. S., 1958. Some phenylthiourea derivatives and their antituberculous activity. J. Am. Chem. Soc. 80 2205–2217.
Gollasch, M., Bychkov, R., Ried, C., Behrendt, F., Scholze, S., Luft, F. C., & Haller, H., 1995. Pinacidil relaxes porcine and human coronary arteries by activating ATP-dependent potassium channels in smooth muscle cells. J. Pharmacol. Exp. Ther. 275, (2), 681–692.
Harisadhan, G., Yella, R., Nath, J., & Patel, B. K., 2008. Desulfurization Mediated by Hypervalent Iodine(III): A Novel Strategy for the Construction of Heterocycles. Eur. J. Org. Chem. 36, 6189-6196.
Henderson, W., Nicholson, B. K., & Rickard, C. E., 2001. Platinum(II) complexes of chelating and monodentate thiourea monoanions incorporating chiral, fluorescent or chromophoric groups. Inorg. Chim. Acta 320, 101-109.
Henderson, W., Nicholson, B. K., Dinger, M. B., & Bennett, R. L., 2002. Thiourea monoanion and dianion complexes of rhodium(III) and ruthenium(II). Inorg. Chim. Acta 338, 210-218.
Herr, R. J., Kuhler, J. L., Meckler, H., & Opalka, C. J., 2000. A Convenient Method for the Preparation of Primary and Symmetrical N,N’-Disubstituted Thioureas. Synthesis 11, 1569–1574.
Itoh, K., Miyake, A., Tada, N., Tanabe, M., Hirata, M., & Oka, Y., 1984. Synthesis and β-Adrenergic blocking activity of 2-(N-Substituted amino)-1,2,3,4-tetrahydronaphthalen-1-ol derivatives. Chem. Pharm. Bull. 32,130-135.
Karakuş, S., & Rollas, S., 2002. Synthesis and antituberculosis activity of new N-phenyl-N´-[4-(5-alkyl/arylamino-1,3,4-thiadiazole-2-yl)phenyl]thioureas. IL Farmaco 57, 577–581.
Katritzky, A. R., Ledoux, S., Witek, R. M., & Nair, S. K., 2004. 1-(Alkyl/arylthiocarbonyl) benzotriazoles as stable isothiocyanate equivalents: synthesis of di- and trisubstituted thiourea. J. Org. Chem. 69, 2976–2982.
Kumavat, P. P., Jangale, A. D., Patil, D. R., Dalal, K. S., Meshram, J. S., & Dalal, D. S., 2013. Green synthesis of symmetrical N, N´-disubstituted thiourea derivatives in water using solar energy. Environ. Chem. Lett. 11, 177-182.
Lambelin, G., Freerksen, E., Orlowski, E. H., & Thumin, H. J., 1970. Pharmacology and Toxicology of Isoxyl. Antibiot Chemother 16, 84-95.
Liav, A., Angala, S. K., Brennan, P. J., & Jackson, M., 2008. N-D-Aldopentofuranosyl-N-[p-(isoamyloxy)phenyl]-thiourea derivatives: Potential anti-TB therapeutic agents. Bioorg. Med. Chem. Lett. 18, 2649-2651.
Ranise A., Spallarossa, A., Bruno, O., Schenone, S., Fossa, P., Menozzi, G., Bondavalli, F., Mosti, L., Capuano, A., Mazzeo, F., Falcone, G., & Filippelli, W., 2003. Synthesis of N-Substituted-N-acylthioureas of 4-substituted piperazines endowed with local anesthetic, antihyperlipidemic, antiproliferatives and antiarrhythmic, analgesic, antiaggregating actions. IL farmaco 58, 765–780.
Schroeder, D. C., 1955. Thioureas. Chem Rev 55, 181–228.
Sharma, S., 1978. Thiophosgene in organic synthesis. Synthesis 803.
Sulis, G., Centis, R., Sotgiu, G., D´Ambrossio, L., Pontali, E., Spanavello, A., Matteelli, A., & Zumla, A., 2016, Recent developments in the diagnosis and management of tuberculosis. NPJ Prim. Care Resp. Med. 26, 16078.
Suss-Fink, G., Bodensieck, U., Hoferkamp, L., Rheinwald, G., & Stoeckli-Evans, H., 1992. Multicenter ligand transformation of thioureas on ruthenium clusters. J. Cluster Sci. 3 (4), 469-478.
Uckun, F. M., Mao, C., & Pendergrass, S., 2000. N-[2-(4-methylphenyl)ethyl]-N′-[2-(5-bromopyridyl)]-thiourea as a potent inhibitor of NNRTI-resistant and multidrug-resistant human immunodeficiency virus type 1. Antivir. Chem. Chemother. 11, 135-140.
Üngören, S.H., & Fatih, S., 2016. Novel Self-Condensation of Ammonium Dithiocarbamates Leading to Symmetrical Substituted Thioureas. Phosphorus, Sulfur Silicon Relat. Elem. 192, 28-33.
Vázquez, J., Bernés, S., Reyes, Y., Moya, M., Sharma, P., Álvarez, C., & Gutierres, R., 2004. Solvent-Free Synthesis of Chiral N,N´-Disubstituted Thioureas by ‘Just Mixing’ the Reagents. Synthesis 12, 1955–1958.
Venkatachalam, T. K., & Uckun, F. M., 2005. Synthesis of Symmetrical and Asymmetrical Phenethyl Thiourea Compounds as Nonnucleoside Inhibitors of HIV-1 Reverse Transcriptase. Synth. Commun. 35, 2039–2056.
Weiss, R.A., 1993. How does HIV cause AIDS? Science 260, 1273-1279. Yamazaki N., Higashi, F., Iguchi, T., 1974. Carbonylation of amines with carbon dioxide under atmospheric conditions. Tetrahedron Lett. 15, 1191–1194.
Yoon T. P., Ischay, M. A., & Du, J., 2010. Visible light photocatalysis as a greener approach to photochemical synthesis. Nat. Chem., 2, 527–532. Yuan, K., Zhang, L., Song, H., Hu, Y., & Wu, X., 2008. Chiral phosphinothiourea organocatalyst in the enantioselective Morita– Baylis–Hillman reactions of aromatic aldehydes with methyl vinyl ketone. Tetrahedron Lett. 49, 6262–6264.
Zhang, Z., Wu, H., & Tan, Y., 2013. A simple and straightforward synthesis of phenyl isothiocyanates, symmetrical and unsymmetrical thioureas under ball milling. RSC Adv. 3, 16940-16944.