Diseño de la Parte Activa de un Transformador de Potencia Mediante Algoritmos Genéticos para la Minimizar las Pérdidas

  • Norberto Hernández-Romero Universidad Autónoma del Estado de Hidalgo
  • Alberto Ortíz-Licona Universidad Autónoma del Estado de Hidalgo
  • Juan Carlos Seck Tuoh-Mora Universidad Autónoma del Estado de Hidalgo
  • Pedro Lagos-Eulogio Universidad Autónoma del Estado de Hidalgo
  • Joselito Medina Marín Universidad Autónoma del Estado de Hidalgo
  • Germán Rosas-Ortíz Instituto Tecnol´ogico de Pachuca
Palabras clave: Diseño de transformadores, optimización, transformador de potencia, algoritmo genético, diseño de máquinas eléctricas

Resumen

Este trabajo aborda el problema de optimización del diseño de la parte activa de un transformador trifásico de potencia de 10 MVA y 115/ 13.8 kV con núcleo tipo columnas y devanados en disco. El objetivo es determinar un diseño que cumpla con el menor costo total de adquisición considerando los factores de evaluación de pérdidas. Este es un problema frecuente al que se enfrentan los fabricantes de transformadores durante la etapa de licitación donde deben ofrecer en corto tiempo un diseño que minimiza el costo de adquisición, el cual está compuesto por el costo de materiales más el costo monetario de las pérdidas. Es por ello que el problema de optimización está construido por estos dos factores que actúan como fuerzas opuestas. Se reporta el método de Algoritmos Genéticos (AG) para la implementación de la optimización al modelo de la parte activa que calcula dimensiones, masa del núcleo, devanados, pérdidas en el núcleo e impedancia del transformador. Se reportan los resultados mostrando que se encuentran los parámetros del diseño que minimizan la función costo y que cumple con las restricciones especificadas.

Descargas

La descarga de datos todavía no está disponible.

Citas

Aghmasheh, R., Rashtchi, V., Rahimpour, E., 2018. Gray box modeling of power transformer windings based on design geometry and particle swarm optimization algorithm. IEEE Transactions on Power Delivery 5, 2384–2393. DOI: 10.1109/TPWRD.2018.2808518

Amoiralis, E., Georgilakis, P., Tsili, M. A., Souflaris, A. G. K. A. T., 2011. Complete software package for transformer design optimization and economic evaluation analysis. In Materials Science Forum 670, 535–546.

Amoiralis, E., Tsili, M., Kladas, A. G., 2009a. Transformer design and optimization: a literature survey. IEEE Transactions on Power Delivery 4, 1999–2024. DOI: 10.1109/TPWRD.2009.2028763

Amoiralis, E., Tsili, M. A., Georgilakis, P. S., Kladas, A., Souflaris, A., 2008.

A parallel mixed integer programming-finite element method technique forglobal design optimization of power transformers. IEEE transactions on Magnetics 6, 1022–1025. DOI: 10.1109/tmag.2007.915119

Amoiralis, E. I., Georgilakis, P. S., Tsili, M. A., Kladas, A. G., 2009b. Global transformer optimization method using evolutionary design and numerical field computation. IEEE transactions on magnetics 3, 1720–1723. DOI: 10.1109/TMAG.2009.20127

Andersen, O. W., 1991. Optimized design of electric power equipment. IEEE Computer Applications in Power 4, 11–15. DOI: 10.1109/67.65030

C57.120, S., 2017. Ieee guide for loss evaluation of distribution and power transformers and reactors. IEEE Power and Energy Society.

C57.120.1991, S., 1991. Ieee guide for loss evaluation of distribution and power transformers and reactors. IEEE Power and Energy Society.

C57.12.80, S., 2010. Ieee standard terminology for power and distribution transformers. IEEE Power and Energy Society 1.

C57.12.90, S., 2015. Ieee test code for liquid-immersed distribution, power, and regulating transformers. IEEE Power and Energy Society 1.

CFE, 2015. Evaluacion de pérdidas de transformadores de potencia y cálculo de penalizacion. Comisi ´ on Federal de Electricidad, CFE K0000-20.

De-Jong, K., 1975. An analysis of the behavior of a class of genetic adaptive systems,. PhD thesis, Dept. of Computer and Comm. Sciences, Univ. of Michigan 1.

Dellinger, J. H., 1910. The temperature coefficient of resistance of copper. Journal of the Franklin Institute 170 (3), 213–216. DOI: 10.1016/s0016-0032(10)90872-7

Doulamis, N. D., Doulamis, A. D., Georgilakis, P. S., Kollias, S. D., Hatziargyriou, N. D., 2002. A synergetic neural network-genetic scheme for optimal transformer construction. Integrated Computer-Aided Engineering 1, 37–56. DOI: 10.3233/ICA-2002-9103

Georgilakis, P., 2009. Recursive genetic algorithm-finite element method technique for the solution of transformer manufacturing cost minimisation problem. IET electric power applications 6, 514–519. DOI: 10.1049/iet-epa.2008.0238

Georgilakis, P. S., Olivares, J. C., Esparza-Gonzalez, M. S., 2010. An evolutionary computation solution to transformer design optimization problem. In 7th International Conference on Electrical and Electronics Engineering Research 1, 226–31.

Georgilakis, P. S., Tsili, M. A., Souflaris, A. T., 2007. A heuristic solution to the transformer manufacturing cost optimization problem. Journal of materials processing technology 1, 260–266. DOI: 10.1016/j.jmatprotec.2006.03.034

Geromel, L. H., Souza, C. R., 2002. The application of intelligent systems in power transformer design. In: IEEE CCECE2002. Canadian Conference on Electrical and Computer Engineering. Conference Proceedings (Cat.

No. 02CH37373). Vol. 1. IEEE, pp. 285–290.

Goldberg, D. E., 1989. Genetic algorithms in search, optimization and machine learning. Addison-Wesley Longman Publishing Co., Inc., Boston 1.

Hernandez, C., Arjona, M. A., Shi-Hai, D., 2008. Object-oriented knowledgebased system for distribution transformer design. IEEE Transactions on Magnetics 10, 2332–2337. DOI: 10.1109/tmag.2008.2001483

Holland, J. H., 1992. Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. MIT press 1.

Hui, L., Li, H., Bei, H., Shunchang, Y., 2001. Application research based on improved genetic algorithm for optimum design of power transformers. In: ICEMS’2001. Proceedings of the Fifth International Conference on Electrical Machines and Systems (IEEE Cat. No. 01EX501). Vol. 1. IEEE, pp. 242–245.

Hurley, W. G., Wolfle, W. H., Breslin, J. G., 1998. Optimized transformer design: Inclusive of high-frequency effects. IEEE Transactions on Power Electronics 4, 651–659. DOI: 10.1109/63.704133

Khatri, A., Hasmat, M., Rahi, O. P., 2012. Optimal design of power transformer using genetic algorithm. International Conference on Communication Systems and Network Technologies 1. DOI: 10.1109/csnt.2012.180

Kulkarni, S. V., Khaparde, S., 2004. Transformer engineering: design and practice. Crc Press, New York.

Nims, J., Smith, R., El-Keib, A., 1996. Application of a genetic algorithm to power transformer design. Electric machines and power Systems 24 (6), 669–680. DOI: 10.1080/07313569608955702

Olivares-Galvan, J. C., Leon, F. D., Georgilakis, P. S., Escarela-Perez, R., 2010. Selection of copper against aluminium windings for distribution transformers. IET Electric Power Applications 6, 474–485. DOI: 10.1049/iet-epa.2009.0297

Pham, T. H., Salon, S. J., Hoole, S. R. H., 1996. Shape optimization of windings for minimum losses. IEEE Transactions on Magnetics 5, 4287–4289. DOI: 10.1109/20.538845

Poloujadoff, M., Findlay, R. D., 1986. A procedure for illustrating the effect of variation of parameters on optimal transformer design. IEEE Transactions on Power Systems 4, 202–205.

Rubaai, A., 1994. Computer aided instruction of power transformer design in the undergraduate power engineering class. IEEE Transactions on Power Systems 9, 1174–1181. DOI: 10.1109/59.336081

Salkoski, R., Chorbev, I., 2012. Design optimization of distribution transformers based on differential evolution algorithms. In: 4th ICT Innovations 2012 Web Proceedings of the International Conference in Ohrid, Macedonia. Citeseer, pp. 35–44.

Sawhney, A., Chakrabarti, A., 2010. Course in electrical machine design. Dhanpat Rai.

Subramanian, S., Padma, S., 2011. Optimization of transformer design using bacterial foraging algorithm. International Journal of Computer Applications 19 (3), 52–57.

Vecchio, R. D., Poulin, B., Feeney, M. F., Feghali, P. T., Shah, D. M., Ahuja, R., Dillipkumar, M., 2001. Transformer design principles: with applications to core-form power transformers. CRC press.

Zhang, S., Hu, Q., Wang, X., Zhu, Z., 2009. Application of chaos genetic algorithm to transformer optimal design. In: 2009 International Workshop on Chaos-Fractals Theories and Applications. IEEE, pp. 108–111.

Publicado
2020-01-05
Cómo citar
Hernández-Romero, N., Ortíz-Licona , A., Seck Tuoh-Mora, J. C., Lagos-Eulogio, P., Medina Marín, J., & Rosas-Ortíz, G. (2020). Diseño de la Parte Activa de un Transformador de Potencia Mediante Algoritmos Genéticos para la Minimizar las Pérdidas. Pädi Boletín Científico De Ciencias Básicas E Ingenierías Del ICBI, 7(14), 52-58. https://doi.org/10.29057/icbi.v7i14.4424

Artículos más leídos del mismo autor/a