Evaluación de la lumiscencia de puntos cuánticos de carbono sintetizados mediante el método hidrotermal a partir de triticum
Resumen
En el presente trabajo se realizó la síntesis de puntos cuánticos a partir de Trigo (Triticum) por el método hidrotermal, optimizando las condiciones de síntesis para el control de la emisión y composición de la superficie para su potencial aplicación como biomarcador. Los puntos cuánticos de carbono obtenidos, fueron caracterizados mediante las técnicas de espectroscopia de luminiscencia, obteniendo una excitación máxima a los 371 nm y una emisión máxima en los 442 nm emitiendo un color azul-cian dentro del rango visible que fue comprobado por el sistema de coordenadas cromáticas, por espectroscopia UV-Vis se presentan transiciones electrónicas π-π* y n-π*, así como el cálculo de Egap con valores de 1.61 y 2.13 eV. Finalmente, la espectroscopia FT-IR, nos muestra grupos funcionales como OH-, C-H, C-N, C=C, C-O, C-OH, C-O-C, COOH, C=C, lo que permite la formación de puntos cuánticos funcionalizados para la fabricación de biomarcadores.
Descargas
Citas
Y. Mejias Sánchez, N. Cabrera Cruz, A. M. Toledo Fernández, and O. J. Duany Machado, “La nanotecnología y sus posibilidades de aplicación en el campo científico-tecnológico,” Rev. Cuba. Salud Publica, vol. 35, no. 3, pp. 1–9, 2009.
M. Quintili, “Nanociencia y Nanotecnología... un mundo pequeño,” Cuaderno, vol. 42, pp. 125–155, 2012.
M. Elisa et al., “Síntesis Y Caracterización De Nuevas Su Uso En Nanomedicina,” pp. 5–12, 2014.
A. I. S. Solís, “Síntesis y caracterización de puntos cuanticos de CdSe con aplicaciones en celdas fotovoltaicas con configuración FTO/TiO2/CdSe/ZnS,” p. 69, 2014.
J. L. Movilla Rosell, “Confinamiento nanoscópico en estructuras semiconductoras cero-dimensionales,” p. 342, 2007.
S. Y. Lim, W. Shen, and Z. Gao, “Carbon quantum dots and their applications,” Chem. Soc. Rev., vol. 44, no. 1, pp. 362–381, 2015.
B. O. Dabbousi et al., “(CdSe)ZnS Core−Shell Quantum Dots: Synthesis and Characterization of a Size Series of Highly Luminescent Nanocrystallites,” J. Phys. Chem. B, vol. 101, no. 46, pp. 9463–9475, 1997.
M. Algarra et al., “Carbon dots obtained using hydrothermal treatment of formaldehyde. Cell imaging in vitro,” Nanoscale, vol. 6, no. 15, pp. 9071–9077, 2014.
X. Niu, G. Liu, L. Li, Z. Fu, H. Xu, and F. Cui, “Green and economical synthesis of nitrogen-doped carbon dots from vegetables for sensing and imaging applications,” RSC Adv., vol. 5, no. 115, pp. 95223–95229, 2015.
M. Asha Jhonsi and S. Thulasi, “A novel fluorescent carbon dots derived from tamarind,” Chem. Phys. Lett., vol. 661, pp. 179–184, 2016.
X. Feng et al., “Easy synthesis of photoluminescent N-doped carbon dots from winter melon for bio-imaging,” RSC Adv., vol. 5, no. 40, pp. 31250–31254, 2015.
F. Du et al., “Economical and green synthesis of bagasse-derived fluorescent carbon dots for biomedical applications,” Nanotechnology, vol. 25, no. 31, 2014.
N. Wang, Y. Wang, T. Guo, T. Yang, M. Chen, and J. Wang, “Green preparation of carbon dots with papaya as carbon source for effective fluorescent sensing of Iron (III) and Escherichia coli,” Biosens. Bioelectron., vol. 85, pp. 68–75, 2016.
S. Zhao et al., “Green Synthesis of Bifunctional Fluorescent Carbon Dots from Garlic for Cellular Imaging and Free Radical Scavenging,” ACS Appl. Mater. Interfaces, vol. 7, no. 31, pp. 17054–17060, 2015.
A. Sachdev and P. Gopinath, “Green synthesis of multifunctional carbon dots from coriander leaves and their potential application as antioxidants, sensors and bioimaging agents,” Analyst, vol. 140, no. 12, pp. 4260–4269, 2015.
V. N. Mehta, S. Jha, and S. K. Kailasa, “One-pot green synthesis of carbon dots by using Saccharum officinarum juice for fluorescent imaging of bacteria (Escherichia coli) and yeast (Saccharomyces cerevisiae) cells,” Mater. Sci. Eng. C, vol. 38, no. 1, pp. 20–27, 2014.
Z. L. Wu et al., “One-pot hydrothermal synthesis of highly luminescent nitrogen-doped amphoteric carbon dots for bioimaging from bombyx mori silk – natural proteins,” no. 207890, 2017.
A. Prasannan and T. Imae, “One-pot synthesis of fluorescent carbon dots from orange waste peels,” Ind. Eng. Chem. Res., vol. 52, no. 44, pp. 15673–15678, 2013.
A. M. Alam, B. Y. Park, Z. K. Ghouri, M. Park, and H. Y. Kim, “Synthesis of carbon quantum dots from cabbage with down- and up-conversion photoluminescence properties: Excellent imaging agent for biomedical applications,” Green Chem., vol. 17, no. 7, pp. 3791–3797, 2015.
J. Wang, Y. H. Ng, Y.-F. Lim, and G. W. Ho, “Vegetable-extracted carbon dots and their nanocomposites for enhanced photocatalytic H 2 production,” RSC Adv., vol. 4, no. 83, pp. 44117–44123, 2014.
V. N. Mehta, S. Jha, R. K. Singhal, and S. K. Kailasa, “Preparation of multicolor emitting carbon dots for HeLa cell imaging,” New J. Chem., vol. 38, no. 12, pp. 6152–6160, 2014.
D. Wang, X. Wang, Y. Guo, W. Liu, and W. Qin, “Luminescent properties of milk carbon dots and their sulphur and nitrogen doped analogues,” RSC Adv., vol. 4, no. 93, pp. 51658–51665, 2014.
Y. Xu et al., “Green synthesis of fluorescent carbon quantum dots for detection of Hg2+,” Chinese J. Anal. Chem., vol. 42, no. 9, pp. 1252–1258, 2014.
L. Wang and H. S. Zhou, “Green synthesis of luminescent nitrogen-doped carbon dots from milk and its imaging application,” Anal. Chem., vol. 86, no. 18, pp. 8902–8905, 2014.
J. R. Bhamore, S. Jha, R. K. Singhal, T. J. Park, and S. K. Kailasa, “Facile green synthesis of carbon dots from Pyrus pyrifolia fruit for assaying of Al3+ion via chelation enhanced fluorescence mechanism,” J. Mol. Liq., vol. 264, no. 2017, pp. 9–16, 2018.
V. N. Mehta, S. Jha, H. Basu, R. K. Singhal, and S. K. Kailasa, “One-step hydrothermal approach to fabricate carbon dots from apple juice for imaging of mycobacterium and fungal cells,” Sensors Actuators, B Chem., vol. 213, pp. 434–443, 2015.
Z. N. Juárez, M. E. Bárcenas-Pozos, and L. R. Hernández, “El grano de trigo : características generales y algunas problemáticas y soluciones a su almacenamiento,” Temas Sel. Ing. Aliment., vol. 8, no. 1, pp. 79–92, 2014.
B. De and N. Karak, “A green and facile approach for the synthesis of water soluble fluorescent carbon dots from banana juice,” RSC Adv., vol. 3, no. 22, pp. 8286–8290, 2013.
H. Huang, Y. Xu, C.-J. Tang, J.-R. Chen, A.-J. Wang, and J.-J. Feng, “Facile and green synthesis of photoluminescent carbon nanoparticles for cellular imaging,” New J. Chem., vol. 38, no. 2, p. 784, 2014.
L. Wu et al., “A Green Synthesis of Carbon Nanoparticle from Honey for RealTime Photoacoustic Imaging,” Nano Res., vol. 6, no. 5, pp. 312–325, 2013.
S. Ullah, “Measurement of optical band gap of semiconductor materials,” 2015.
L. A. García Pérez, “Crecimiento y caracterización de películas delgadas de CdTe:Cu,” 2007.
J. Shen, Y. Zhu, X. Yang, and C. Li, “Graphene quantum dots: Emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices,” Chem. Commun., vol. 48, no. 31, pp. 3686–3699, 2012.
C. Jiang, H. Wu, X. Song, X. Ma, J. Wang, and M. Tan, “Presence of photoluminescent carbon dots in Nescafe®original instant coffee: Applications to bioimaging,” Talanta, vol. 127, pp. 68–74, 2014.
R. Bandi, B. R. Gangapuram, R. Dadigala, R. Eslavath, S. S. Singh, and V. Guttena, “Facile and green synthesis of fluorescent carbon dots from onion waste and their potential applications as sensor and multicolour imaging agents,” RSC Adv., vol. 6, no. 34, pp. 28633–28639, 2016.
X. Jia, J. Li, and E. Wang, “One-pot green synthesis of optically pH-sensitive carbon dots with upconversion luminescence,” Nanoscale, vol. 4, no. 18, pp. 5572–5575, 2012.