Aplicación del Algoritmo de Búsqueda Gravitacional para Optimizar un Problema de Planeación Agregada de la Producción

Palabras clave: Algoritmo de B´usqueda Gravitacional, Optimizaci´on, Computaci´on Evolutiva, Planeaci´on Agregada, MATLAB

Resumen

Dada la necesidad de buscar alternativas que permitan cada vez encontrar diversas soluciones al problema de planeaci´on agregada,
en esta investigaci´on se propone la soluci´on de un problema de APP por medio del algoritmo de b´usqueda gravitacional
(GSA). Se estudia el manejo de restricciones para este algoritmo y, as´ı mismo, se realiza una introducci´on a las funciones de
desempe˜no a las que ha sido sujeto, finalmente se exponen los resultados de la propuesta demostrando que este algoritmos de
b´usqueda y optimizaci´on puede ser aplicado para solucionar este tipo de problemas donde se tiene una gran cantidad de variables y
restricciones.

Descargas

La descarga de datos todavía no está disponible.

Citas

Abu Bakar, M. R., Bakheet, A. J. K., Kamil, F., Kalaf, B. A., Abbas, I. T., Soon,

L. L., 2016. Enhanced simulated annealing for solving aggregate production

planning. Mathematical Problems in Engineering 2016.

Al-e, S. M. J. M., Aryanezhad, M. B., Sadjadi, S. J., et al., 2012. An eficient

algorithm to solve a multi-objective robust aggregate production planning in

an uncertain environment. The International Journal of Advanced Manufacturing

Technology 58 (5-8), 765–782.

Anand Jayakumar, A., Krishnaraj, C., Nachimuthu, A., 2017. Aggregate production

planning: Mixed strategy. Pak. J. Biotechnol. Vol 14 (3), 487–490.

Bu_a, E., Taubert, W., 1972. Production-inventory systems planning and control.

Tech. rep.

Chaturvedi, N. D., Bandyopadhyay, S., 2015. Targeting aggregate production

planning for an energy supply chain. Industrial & Engineering Chemistry

Research 54 (27), 6941–6949.

Chehouri, A., Younes, R., Perron, J., Ilinca, A., 2016. A constraint-handling

technique for genetic algorithms using a violation factor. arXiv preprint

arXiv:1610.00976.

Cheraghalikhani, A., Khoshalhan, F., Mokhtari, H., 2019. Aggregate production

planning: A literature review and future research directions. International

Journal of Industrial Engineering Computations 10 (2), 309–330.

da Silva, C. G., Figueira, J., Lisboa, J., Barman, S., 2006. An interactive decision

support system for an aggregate production planning model based on

multiple criteria mixed integer linear programming. Omega 34 (2), 167–177.

Eberhart, R., Kennedy, J., 1995. A new optimizer using particle swarm theory.

In: Micro Machine and Human Science, 1995. MHS’95., Proceedings of the

Sixth International Symposium on. IEEE, pp. 39–43.

Farmer, J. D., Packard, N. H., Perelson, A. S., 1986. The immune system, adaptation,

and machine learning. Physica D: Nonlinear Phenomena 22 (1-3),

–204.

Holt, C. C., Modigliani, F., Muth, J. F., 1956. Derivation of a linear decision

rule for production and employment. Management Science 2 (2), 159–177.

Holt, C. C., Modigliani, F., Simon, H. A., 1955. A linear decision rule for

production and employment scheduling. Management Science 2 (1), 1–30.

Ibrahim, A. M., Swief, R. A., 2018. Comparison of modern heuristic algorithms

for loss reduction in power distribution network equipped with renewable

energy resources. Ain Shams Engineering Journal.

Kirkpatrick, S., Gelatt, C. D., Vecchi, M. P., 1983. Optimization by simulated

annealing. science 220 (4598), 671–680.

Liang, J., Runarsson, T. P., Mezura-Montes, E., Clerc, M., Suganthan, P. N.,

Coello, C. C., Deb, K., 2006. Problem definitions and evaluation criteria

for the cec 2006 special session on constrained real-parameter optimization.

Journal of Applied Mechanics 41 (8), 8–31.

Mehdizadeh, E., Niaki, S. T. A., Hemati, M., 2018. A bi-objective aggregate

production planning problem with learning e ect and machine deterioration:

Modeling and solution. Computers & Operations Research 91, 21–36.

Nam, S.-j., Logendran, R., 1992. Aggregate production planning—a survey

of models and methodologies. European Journal of Operational Research

(3), 255–272.

Narimani, M. R., Vahed, A. A., Azizipanah-Abarghooee, R., Javidsharifi, M.,

Enhanced gravitational search algorithm for multi-objective distribution

feeder reconfiguration considering reliability, loss and operational cost.

IET Generation, Transmission & Distribution 8 (1), 55–69.

Paiva, R. P., Morabito, R., 2009. An optimization model for the aggregate production

planning of a brazilian sugar and ethanol milling company. Annals

of Operations Research 169 (1), 117.

Ramezanian, R., Rahmani, D., Barzinpour, F., 2012. An aggregate production

planning model for two phase production systems: Solving with genetic

algorithm and tabu search. Expert Systems with Applications 39 (1), 1256–

Rashedi, E., 2011. Gravitational search algorithm (gsa).

urlhttps://la.mathworks.com/matlabcentral/fileexchange/27756-

gravitational-search-algorithm-gsa.

Rashedi, E., Nezamabadi-Pour, H., Saryazdi, S., 2009. Gsa: a gravitational

search algorithm. Information sciences 179 (13), 2232–2248.

Yadav, A., Deep, K., 2013. Constrained optimization using gravitational search

algorithm. National Academy Science Letters 36 (5), 527–534.

Zhang, R., Zhang, L., Xiao, Y., Kaku, I., 2012. The activity-based aggregate

production planning with capacity expansion in manufacturing systems.

Computers & Industrial Engineering 62 (2), 491–503.

Publicado
2020-07-05
Cómo citar
Ortiz-Licona, A., Seck Tuoh-Mora, J. C., & Montufar-Benítez, M. A. (2020). Aplicación del Algoritmo de Búsqueda Gravitacional para Optimizar un Problema de Planeación Agregada de la Producción. Pädi Boletín Científico De Ciencias Básicas E Ingenierías Del ICBI, 8(15), 1-6. https://doi.org/10.29057/icbi.v8i15.4945
Tipo de manuscrito
Artículos de investigación

Artículos más leídos del mismo autor/a