Tendencias en el Manejo Inteligente de Energía en Micro Redes
Resumen
El continuo crecimiento de aplicaciones con sensores, transmisión inalámbrica, comunicación de redes y tecnologías de cómputo ha permitido a los sistemas convencionales de generación y transmisión de energía evolucionar a redes inteligentes. Lo anterior ha ocasionando el aumento de la cantidad de datos acumulados en el sector energético. La integración de las energías renovables, e.g., fotovoltaica y eólica, los sistemas de almacenamiento de energía y los vehículos eléctricos en el sistema de distribución ha generado el concepto de micro redes. Por lo tanto, es necesario establecer estrategias de manejo de energía. En este artículo se presentan las tendencias propuestas para el manejo inteligente de la energía. De manera general se describe una micro red, se discuten los problemas y las tendencias para controlarlas. Además, se presenta un estudio sobre el manejo inteligente de la energía basado en big data.
Descargas
Citas
Bialek, T., 2014. Data management and analytics for utilities. URL: https://www.ieee-pes.org/presentations/
Burke, A. F., April 2007. Batteries and ultracapacitors for electric, hybrid, and fuel cell vehicles. Proceedings of the IEEE 95 (4), 806–820. DOI: 10.1109/JPROC.2007.892490
Chandorkar, M. C., Divan, D. M., Adapa, R., Jan 1993. Control of parallel connected inverters in standalone ac supply systems. IEEE Transactions on Industry Applications 29 (1), 136–143. DOI: 10.1109/28.195899
Chen, Y., Luh, P. B., Guan, C., Zhao, Y., Michel, L. D., Coolbeth, M. A., Friedland, P. B., Rourke, S. J., Feb 2010. Short-term load forecasting: Similar day-based wavelet neural networks. IEEE Transactions on Power Systems 25 (1), 322–330. DOI: 10.1109/TPWRS.2009.2030426
Dasgupta, S., Mohan, S. N., Sahoo, S. K., Panda, S. K., Aug 2012. A plug and play operational approach for implementation of an autonomous-micro-grid system. IEEE Transactions on Industrial Informatics 8 (3), 615–629. DOI: 10.1109/TII.2012.2193893
Dimeas, A. L., Hatziargyriou, N. D., Aug 2005. Operation of a multiagent system for microgrid control. IEEE Transactions on Power Systems 20 (3), 1447–1455. DOI: 10.1109/TPWRS.2005.852060
Ellabban, O., Abu-Rub, H., Blaabjerg, F., 2014. Renewable energy resources: Current status, future prospects and their enabling technology. Renewable and Sustainable Energy Reviews 39, 748 – 764. URL: http://www.sciencedirect.com/science/article/pii/S1364032114005656 DOI: https://doi.org/10.1016/j.rser.2014.07.113
Hahn, H., Meyer-Nieberg, S., Pickl, S., 2009. Electric load forecasting methods: Tools for decision making. European Journal of Operational Research 199 (3), 902 – 907. URL: http://www.sciencedirect.com/science/article/pii/S0377221709002094. DOI: https://doi.org/10.1016/j.ejor.2009.01.062
Hamzeh, M., Mokhtari, H., Karimi, H., Winter 2013. A decentralized self-adjusting control strategy for reactive power management in an islanded multi-bus mv microgrid. Canadian Journal of Electrical and Computer Engineering 36 (1), 18–25. DOI: 10.1109/CJECE.2013.6544468
Han, H., Hou, X., Yang, J., Wu, J., Su, M., Guerrero, J. M., Jan 2016. Review of power sharing control strategies for islanding operation of ac microgrids. IEEE Transactions on Smart Grid 7 (1), 200–215. DOI: 10.1109/TSG.2015.2434849
Hernandez-Aramburo, C. A., Green, T. C., Mugniot, N., May 2005. Fuel consumption minimization of a microgrid. IEEE Transactions on Industry Applications 41 (3), 673–681. DOI: 10.1109/TIA.2005.847277
IEEE, April 2018. IEEE standard for interconnection and interoperability of distributed energy resources with associated electric power systems interfaces. IEEE Std 1547-2018 (Revision of IEEE Std 1547-2003), 1–138. DOI: 10.1109/IEEESTD.2018.8332112
Issa, W. R., Khateb, A. H. E., Abusara, M. A., Mallick, T. K., June 2018. Control strategy for uninterrupted microgrid mode transfer during unintentional islanding scenarios. IEEE Transactions on Industrial Electronics 65 (6), 4831–4839. DOI: 10.1109/TIE.2017.2772199
Jiang, H., Wang, K., Wang, Y., Gao, M., Zhang, Y., 2016. Energy big data: A survey. IEEE Access 4, 3844–3861. DOI: 10.1109/ACCESS.2016.2580581
Karaman, E., Farasat, M., Trzynadlowski, A. M., Dec 2014. Indirect matrix converters as generator-grid interfaces for wind energy systems. IEEE Journal of Emerging and Selected Topics in Power Electronics 2 (4), 776–783. DOI: 10.1109/JESTPE.2014.2329920
Kroposki, B., Johnson, B., Zhang, Y., Gevorgian, V., Denholm, P., Hodge, B., Hannegan, B., March 2017. Achieving a 100% renewable grid: Operating electric power systems with extremely high levels of variable renewable energy. IEEE Power and Energy Magazine 15 (2), 61–73. DOI: 10.1109/MPE.2016.2637122
Lasseter, R. H., Jan 2002. Microgrids. In: 2002 IEEE Power Engineering Society Winter Meeting. Conference Proceedings (Cat. No.02CH37309). Vol. 1. pp. 305–308 vol.1. DOI: 10.1109/PESW.2002.985003
le Zhou, K., lin Yang, S., Shen, C., 2013. A review of electric load classification in smart grid environment. Renewable and Sustainable Energy Reviews 24, 103 – 110. URL: http://www.sciencedirect.com/science/article/pii/S1364032113001822 DOI: https://doi.org/10.1016/j.rser.2013.03.023
Lu, X., Guerrero, J. M., Sun, K., Vasquez, J. C., Teodorescu, R., Huang, L., March 2014. Hierarchical control of parallel ac-dc converter interfaces for hybrid microgrids. IEEE Transactions on Smart Grid 5 (2), 683–692. DOI: 10.1109/TSG.2013.2272327
Ma, Z., Pesaran, A., Gevorgian, V., Gwinner, D., Kramer,W., Sep. 2015. Energy storage, renewable power generation, and the grid: Nrel capabilities help to develop and test energy-storage technologies. IEEE Electrification Magazine 3 (3), 30–40. DOI: 10.1109/MELE.2015.2447972
MediaGT, 2013. Big data on the smart grid: 2013 in review and 2014 outlook. URL: http://www.greentechmedia.com/articles/read/Big-Datas-5-Big-Steps-to-Smart-Grid-Growth-in-2014
Moayedi, S., Davoudi, A., Feb 2016. Distributed tertiary control of dc microgrid clusters. IEEE Transactions on Power Electronics 31 (2), 1717–1733. DOI: 10.1109/TPEL.2015.2424672
Nejabatkhah, F., Li, Y. W., Dec 2015. Overview of power management strategies of hybrid ac/dc microgrid. IEEE Transactions on Power Electronics 30 (12), 7072–7089. DOI: 10.1109/TPEL.2014.2384999
Oldewurtel, F., Ulbig, A., Parisio, A., Andersson, G., Morari, M., Dec 2010. Reducing peak electricity demand in building climate control using real-time pricing and model predictive control. In: 49th IEEE Conference on Decision and Control (CDC). pp. 1927–1932. DOI: 10.1109/CDC.2010.5717458
Olivares, D. E., Mehrizi-Sani, A., Etemadi, A. H., Cañizares, C. A., Iravani, R., Kazerani, M., Hajimiragha, A. H., Gomis-Bellmunt, O., Saeedifard, M., Palma-Behnke, R., Jiménez-Estévez, G. A., Hatziargyriou, N. D., July 2014. Trends in microgrid control. IEEE Transactions on Smart Grid 5 (4), 1905–1919. DOI: 10.1109/TSG.2013.2295514
Secretaría de Energía, 2018. Reporte de avance de energías limpias primer semester 2018.
Timbus, A., Liserre, M., Teodorescu, R., Rodriguez, P., Blaabjerg, F., March 2009. Evaluation of current controllers for distributed power generation systems. IEEE Transactions on Power Electronics 24 (3), 654–664. DOI: 10.1109/TPEL.2009.2012527
Willmann, G., Coutinho, D. F., Pereira, L. F. A., Libano, F. B., June 2007. Multiple-loop h-infinity control design for uninterruptible power supplies. IEEE Transactions on Industrial Electronics 54 (3), 1591–1602. DOI: 10.1109/TIE.2007.894721
Zhou, K., Fu, C., Yang, S., 2016. Big data driven smart energy management: From big data to big insights. Renewable and Sustainable Energy Reviews 56, 215 – 225.
Zhou, K., Yang, S., 2015. Demand side management in china: The context of China’s power industry reform. Renewable and Sustainable Energy Reviews 47, 954 – 965. URL: http://www.sciencedirect.com/science/article/pii/S1364032115001896. DOI: https://doi.org/10.1016/j.rser.2015.03.036