Una revisión general de las estructuras metal-orgánicas (MOF) dentro de la química inorgánica
Resumen
Las estructuras metal-orgánicas (MOF) son materiales porosos con arreglos espaciales ordenados de aspecto cristalino y están formados por ligantes orgánicos y iones o cúmulos metálicos. Este tipo de compuestos han sido estudiados durante algunas décadas, debido a los diversos campos de aplicación en donde se han involucrado. La principal razón para su estudio es la gran variedad de ligantes orgánicos y iones metálicos generalmente de transición que pueden ser utilizados para su síntesis, generando un gran número de variables en la geometría (2D o 3D) que controla el tamaño de poro de estos compuestos. Este artículo es una revisión general de las características significativas, los tipos de estructura y métodos sintéticos más importantes usados en la actualidad para MOF, además se mencionan algunas de sus aplicaciones más relevantes dentro de la química inorgánica.
Descargas
Citas
Abney, C. W., Mayes, R. T., Saito, T., Dai, S., 2017. Materials for the Recovery of Uranium from Seawater. Chemical Reviews 117 (23), 13935–14013.
Bai, Y., Dou, Y., Xie, L. 2016. Zr-based metal-organic frameworks:design, synthesis, structure and applications. Chemical Society Reviews. 45 (8) 2327–2367.
Banerjee, D., Wang, H., Deibert, B., Li, J. 2016 Alkaline Earth Metal-Based Metal-Organic Frameworks: Synthesis. The Chemistry of Metal-Organic Frameworks, Properties and applications. Weinheim, Alemania: Wiley-VCH Verlag GmbH & Co.
Borrell Tomás., M. A., Salvador Moya, M. D., 2015. Materiales de carbono. del grafito al grafeno. Ed. Reverté. Universitat Politécnica de Valéncia.
Briones, D., Fernández, B., Calahorro, A. J., Fairen‐Jimenez, D., Sanz, R., Martínez, F., Orcajo, G., Sebastián, E. S., Seco, J. M., González, C. S., Llopis, J., Rodríguez‐Diéguez, A., 2016. Highly active anti‐diabetic metal‐organic framework. Crystal Growth & Design 16, 537–540.
Chen, B., Yang, Y., Zapata, F., Qian, G., Luo, Y., Zhang, J., Lobkovsky, E. 2006 Enhanced Near-Infrared-Luminescence in an Erbium Tetrafluoroterephthalate Framework. Inorganic Chemistry 45 (22) 8882–8886.
Chui, S., Lo, S., Charmant, J., Orpen, A., Williams, I., 1999. A Chemically Functionalizable Nanoporous Material [Cu3(TMA)2(H2O)n. Science 283 (5405), 1148–1150.
Chun-Yi, S., Xin-Long, W., Xiao, Z., Chao, Q., Peng, L., Zhong-Min, S., Dong-Xia, Z., Guo-Gang, S., Kui-Zhan, S., Han, W., Jing, L., 2013. Nature Communications 4, 1–8.
Czaja, A. Trukhan, N. Müller, U. 2009. Industrial applications of metal-organic frameworks. Chemical Society Reviews. 38 (5) 1284–1293.
Duo, Z., Yu, J., Yang, Y., Wang, Z., Yang, D., Qian, G. 2014. Luminescent metal.organic framework films as higly sensitive and fast-response oxygen sensors. Journal of the American Chemical Society. 136 (15) 5527–5530.
Eddaoudi, M., Kim, J., Rosi, N., Vodak, D., Wachter, J., O’Keefe, M., Yaghi, O. M., 2002. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science 295, 469–472.
Férey, G., Mellot-Draznieks, C., Serre, C., Millange, F., Dutour, J., Surble, S., Margiolaki, I. 2005. A chromium terphthalate-based solid with unusually large pore volumes and surface area. Science, 309, 2040–2042.
Fu, Y., Sun, D., Chen, Y., Huang, R., Ding, Z., Fu, X., Li, Z. 2012. An amine.functionalized Titanium Metal-Organic Framework photocatalyst with Visible-Light-Induced activity for CO2 reduction. Angewandte Chemie International Edition, 51, 3364–3367.
Furukawa, H., Cordova, K. E., O’Keeffe, M., Yaghi, O. M., 2013. The Chemistry and Applications of Metal-Organic Frameworks. Science 341(6149), 1230444–1230444.
Gandara, F., Uribe-Romo, F. J., Britt, D. K., Furukawa, H., Lei, L., Cheng, R., Duan, X., O’Keeffe, M., Yaghi, O. M., 2012. Chemistry European Journal 18, 10595–10601.
Gao, W. Y., Chen, Y., Niu, Y., Williams, K., Cash, L., Perez, P. J., Wojtas, L., Cai, J., Chen, Y. S., Ma, S., 2014. Angewandte Chemie 126, 2653–2657.
Graef, M. D., McHenry, M. E., 2012. Structure of Materials: An Introduction to Crystallography, Diffraction and Symmetry. Cambridge University Press 739.
Hanikel, N., Prévot, M. S., Fathieh, F., Kapustin, E. A., Lyu, H., Wang, H., Diercks, N. J., Glover, T. G., Yaghi, O. M., 2019. ACS Central Science 5, 1699−1706.
He, Y., Guo, Z., Xiang, S., Zhang, Z., Zhou, W., Fronczek, F., Parkin, S., Hyde, S., O’Keeffe, M., Chen, B., 2013. Metastable Interwoven mesoporous Metal-Organic Frameworks. Inorganic Chemistry 52 (19), 11580–11584.
Hendon, C., Rieth, A., Korzýnski, M., Dincâ, M., 2017. Grand Challenges and Future Opportunities for Metal-Organic Frameworks. American Chemical Society 3 (6), 554–563.
Horcajada, P., Serre, C., Vallet-Regí, M., Sebban, M., Taulelle, F., Férey G., 2006. Angewandte Chemie International Edition 45, 5974 –5978.
Imaz, I, Rubio‐Martınez, M, García‐Fernandez, L, Garcia, F, Ruiz‐Molina, D, Hernando, J, Puntes, V, Maspoch, D., 2010. Coordination polymer particles as potential drug delivery systems. Chemical Communications 46, 4737–4739.
James, S. L., 2003. Metal-organic frameworks. Chemical Society Reviews 32(5), 276–288.
Jia, J., Sun, F., Fang, Q., Liang, X., Cai, K., Bian, Z., Zhao, H., Gao, L., Zhu, G. 2011. Porous metal–organic frameworks as platforms for functional applications. Chemistry Communications 47, 9167–9169.
Kaskel, S., Furukawa, H., Sun, X., 2016. Functional Linkers. The Chemistry of Metal-Organic Frameworks, Weinheim, Alemania: Wiley-VCH Verlag GmbH & Co.
Kosal, M., Chou, J., Wilson, S., Suslick, K. 2002. A functional zeolite analogue assembled from metalloporphyrins. Nature Materials. 1, 118–121.
Li, H, Eddaoudi, M, O’Keeffe, M, Yaghi, O. M., 1999a. Design and synthesis of an exceptionally stable and highly porous metal‐organic framework. Nature 402, 276–279.
Li, B., Wen, H., Cui, Y., Zhou, W., Qian, G., Chen, B., 2016b. Emerging Multifunctional Metal-Organic Framework Materials. Advanced Materials 28(40), 1–42.
Morris, W., Volosskiy, B., Demir, S., Gandara, F., McGrier, P., Furukawa, H., Cascio, D., Stoddart, J., Yaghi, O. 2012. Synthesis, Structure, and Metalation of Two New Highly Porous Zirconium Metal–Organic Frameworks. Inorganic Chemistry 5 (12) 6443–6445.
Nagapradeep, N., Krishnendu, M., Sourav, S., 2018. Elaboration and Applications of Metal-Organic Frameworks. National University of Singapore.
Nguyen, H., Gándara, F., Furukawa, H. 2016. A titanium-organic framework as an exemplar of combining the chemistry of metal and covalent-organic frameworks. Journal of the American Chemical Society. 138 (13) 4330–4333.
Richens, D. 2005. Ligand substitution reactions at inorganic centers. Chemical Reviews 105 (6) 1961–2002.
Roales, J., Moscoso, F. G., Gámez, F., Lopes-Costa, T., Sousaraei, A., Casado, S., Castro-Smirnov, J. R., Cabanillas-González, J., Almeida, J., Queirós, C., Cunha-Silva, L., Silva A. M. G., Pedrosa, J. M, 2017. Materials 10, 992.
Rowsell, J. L. C., Yaghi, O. M., 2004a. Metal–organic frameworks: a new class of porous materials. Microporous and Mesoporous Materials 73(1-2), 3–14.
Rowsell, J. L. C, Yaghi, O. M., 2006b. Effects of functionalization, catenation, and variation of the metal oxide and organic linking units on the low‐pressure hydrogen adsorption properties of metal‐organic frameworks. Journal of the American Chemical Society 128, 1304–1315.
Salehi Rozveh, Z., Kazemi, S., Karimi, M., Ali, G. A. M., Safarifard, V., 2020. Effect of functionalization of metal-organic frameworks on anion sensing. Polyhedron, 83 (1), 114514.
Savonnet, M, Farrusseng, 2011. D. PCT Appl. WO2011048284.
Schnobrich, J., Lebel, O., Cychosz, K., 2010. Linker-directed vertex desymmetrization for the production of coordination polymers with high porosity. Journal of the American Chemical Society 132 (39) 13941–13948.
Sharmin, E., Zafar, F., (October 12th 2016). Introductory Chapter: Metal Organic Frameworks (MOFs), Metal-Organic Frameworks, Fahmina Zafar and Eram Sharmin, IntechOpen, DOI: 10.5772/64797. Available from: https://www.intechopen.com/books/metal-organic-frameworks/introductory-chapter-metal-organic-frameworks-mofs-
Tan, C., Yang, S., Champness, N., Lin, X., Blake, A., Lewis, W., Schröder, M. 2011. High capacity gas storage by a 4,8-connected metal–organic polyhedral framework Chemistry Communications, 47, 4487–4489.
Tanh Jeazet H. B., Koschine T., Staudt C., Raetzke K., Janiak Ch. 2013. Correlation of gas permeability in a metal-organic framework MIL-101(Cr)–polysulfone mixed-matrix membrane with free volume measurements by positron annihilation lifetime spectroscopy (PALS). membranes, 3, 331–353.
Xu, W., Zhou, Y., Huang, D., Xiong, W., Su, M., Wang, K., Han, S., Hong, M., 2013. Crystal Growth & Design, 13(7), 2722–2727.
Wang, X., Ma, S., Yuan, D., Yoon, J., Hwang, Y., Chang, J., Wang, X., Jørgensen, M., Chen, Y., Zhou, H. 2009. A Large-Surface-Area Boracite-Network-Topology Porous MOF Constructed from a Conjugated Ligand Exhibiting a High Hydrogen Uptake Capacity. Inorganic Chemistry, 48 (16) 7519–7521.
Wang, M., Xie, M., Wu, C., Wang, Y. 2009. From one to three: a serine derivate manipulated homochiral metal-organic framework. Chemical Communications, 2396–2398.
Yaghi, O. M., Li, H., 1995a. Hydrothermal Synthesis of a Metal-Organic Framework Containing Large Rectangular Channels. Journal of the American Chemical Society 117(41), 10401–10402.
Yaghi, O., Kalmutzki, M., Diercks, C., 2019b. Buildind Units of MOFs. Introduction to Reticular Chemistry. Weinheim, Alemania: Wiley-VCH Verlag GmbH & Co.
Yu, J., Cui, Y., Xu, H., Yang, Y., Wang, Z., Chen, B., Qian, G. 2013. Confinement of pyridinium hemicyanine dye within an anionic metal-organic framework for two-photon-pumped lasing. Nature communications, 4:2719.