Algunos errores en el uso de funciones de Lyapunov para control de estructura variable

Palabras clave: Método de Lyapunov, Control robusto, Control por modos deslizantes

Resumen

Este trabajo discute errores encontrados en el uso de funciones de Lyapunov propuestas en resultados recientes de control de estructura variable: en diseños continuos con convergencia en tiempo finito (``Continuous finite-time stabilization of the translational and rotational double integrators'' por Bhat y Bernstein, 1998), basados en funciones implícitas de Lyapunov (``Finite-time and fixed-time stabilization: implicit Lyapunov function approach'' por Polyakov et al, 2015), y basados en funciones de Lyapunov discontinuas por partes (``An LMI approach for second-order sliding set design using piecewise Lyapunov functions'' Tapia et al, 2017).

Descargas

La descarga de datos todavía no está disponible.

Citas

Anosov, D., 1959. On stability of equilibrium points of relay systems. Automation

and Remote Control 20 (2), 135–149.

Bartolini, G., Ferrara, A., Usai, E., 1998. Chattering avoidance by second-order

sliding mode control. IEEE Transactions on Automatic Control 433 (2),

–246.

Bhat, S., Bernstein, D., 2005. Geometric homogeneity with applications to

finite-time stability. Mathematics of Control, Signals and Systems 17 (2),

–127.

Bhat, S. P., Bernstein, D. S., 1998. Continuous finite-time stabilization of the

translational and rotational double integrators. IEEE Transactions on automatic

control 43 (5), 678–682.

Boyd, S., El Ghaoui, L., F´eron, E., Balakrishnan, V., 1994. Linear matrix

inequalities in system and control theory. Vol. 15. Studies in Applied Mathematics,

Philadelphia, USA.

Edwards, C., Spurgeon, S., 1998. Sliding mode control: Theory and applications.

Taylor and Francis, London, England.

Filippov, A., 1960. Differential equations with discontinuous right-hand side.

Mathematical Sbornik 51 (1), 99–128.

Haimo, V. T., 1986. Finite time controllers. SIAM Journal on Control and Optimization

(4), 760–770.

Johansson, M., 1999. Piecewise linear control systems. Ph.D. thesis, Lunden

Institute of Technology, Department of Automatic Control, Lunden, Sweden.

Khalil, H., 2002. Nonlinear systems, 3rd Edition. Prentice Hall, New Jersey,

USA.

Lancaster, P., Tismenetsky, M., 1985. The theory of matrices: with applications.

Elsevier.

Levant, A., 2003. Higher-order sliding modes, differentiation and output feedback

control. International Journal of Control 76 (9-10), 924–941.

Levant, A., 2010. Chattering analysis. IEEE Transactions on Automatic Control

(6), 1380–1389.

Polyakov, A., Efimov, D., Perruquetti,W., 2015. Finite-time and fixed-time stabilization:

Implicit lyapunov function approach. Automatica 51, 332–340.

Shtessel, Y., Edwards, C., Fridman, L., Levant, A., 2013. Sliding mode control and observation. Birkh¨auser, New York, USA.

Tapia, A., Bernal, M., Fridman, L., 2017. An LMI approach for second-order

sliding set design using piecewise Lyapunov functions. Automatica 79, 61–

Utkin, V., 1992. Sliding modes in control and optimization. Springer, Berlin,

Germany.

Utkin, V., Young, K.-K., 1978. Methods for constructing discontinuity planes in

multidimensional variable structure systems. Automation and Remote Control

(10), 1466–1470.

Publicado
2020-07-13
Cómo citar
Vázquez-Dueñas, D. I., & Álvarez-Urias, J. L. (2020). Algunos errores en el uso de funciones de Lyapunov para control de estructura variable. Pädi Boletín Científico De Ciencias Básicas E Ingenierías Del ICBI, 8(16), 11-17. https://doi.org/10.29057/icbi.v8i16.5974